Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекцій з вищої фізики 1 та 2 семестр.doc
Скачиваний:
31
Добавлен:
12.09.2019
Размер:
10.19 Mб
Скачать

Електростатичне поле

Перш ніж вводити поняття електростатичного поля, слід поговорити про теорію близькодії на відстані, яку почав розвивати англійський фізик Майкл Фарадей, а остаточно завершив Максвелл. Цю теорію в сучасному її вигляді зрозуміти надзвичайно важко, особисто я ніяк не розумію, яким же чином за теорією близькодії один заряд безпосередньо „відчуває” присутність іншого через пустоту.

Тут доцільно провести аналогію з ньютонівською теорією „далекодії на відстані”, згідно з якою одне тіло з величезною силою притягує інше тіло, знову ж таки через пустоту, так званий міжзоряний „вакуум”, хоча, ніхто дотепер не сказав, що це таке. Тільки уявіть, у пустоті діють так звані „сили”, і щоби їх „якось” компенсувати, одне тіло повинно обертатися навколо іншого, або навколо їх барицентра, тоді відцентрова сила (тут вже без лапок, бо вона цілком реальна!) якраз компенсує ньютонівську „силу тяжіння”. Далі більше. Уявіть собі, що електромагнітні хвилі розповсюджуються у „вакуумі” з кінцевою швидкістю. А значить, ніякий це не вакуум, а реальне середовище, подібне до середовища, у якому розповсюджується звук, теж, як відомо, з кінцевою швидкістю. Хто мені скаже, як буде розповсюджуватись звукова хвиля у безповітряному просторі? Або електромагнітна хвиля у пустоті? Швидкість цих хвиль буде рівною нескінченності. Кінцева швидкість поширення звуку говорить про те, що звук переносить повітря, цілком певний коефіцієнт опору якому має звукова хвиля. До того ж, швидкість поширення звуку в інших середовищах відмінна від швидкості поширення його в повітрі, але скрізь вона кінцева. Середовище, у якому поширюються електромагнітні хвилі, теж з певним коефіцієнтом опору, звалося раніше (кілька століть тому справді великі були праві, але їх не чули!) і зветься тепер ефіром, я не боюся цього терміну, хоч нехай сучасні фізики-теоретики повісять мене на першій гілляці.

Це був лише відступ. Повертаючись до теорії близькодії, можна сказати, що один заряд „відчуває” дію іншого. Під час переміщення одного заряду А сила, що діє на інший заряд В, вмить змінює своє значення. Причому, ні з самим зарядом В, ні з оточуючим простором нічого не відбувається.

За ідеєю Фарадея, електричні заряди не діють один на одного безпосередньо. Кожен заряд створює в навколишньому просторі електричне поле. Поле одного заряду діє на другий заряд і навпаки.

Спочатку ця ідея виражала одну лише впевненість Фарадея у неможливості взаємодії одного тіла на інше черезпустоту. Доказів існування поля не було. Таких доказів і не можна дістати, досліджуючи нерухомі заряди. Успіх прийшов після вивчення електромагнітних взаємодій рухомих частинок. Спочатку було доведено існування змінних у часі полів, і тільки після цього зроблено висновок про реальність електричного поля нерухомих зарядів.

Використавши ідеї Фарадея, Максвелл теоретично довів скінченну швидкість поширення у просторі електромагнітних взаємодій, чим фактично показав реальність світлоносного ефіру.

Теж, задля відступу скажу, що людям, які пізнали вершки фізичних знань, здається, що вони знають дуже багато. Насправді ж, їх знання, навіть разом взяті, настільки мізерні, що не дозволяють зрозуміти світ Божий. От і Максвелу не повірили. Згодом фізики відмовились від не те що очевидного, а доведеного факту, відкинувши ефір, як середовище.

Про електричне поле сказано наступне – воно матеріальне, існує незалежно від нас, від наших уявлень про нього. Головна властивість електричного поля – здатність його діяти на електричні заряди з певною силою.

Електричне поле нерухомих зарядів називають електростатичним. Воно незмінне з часом і створене тільки електричними зарядами; існує в просторі, який оточує ці заряди і нерозривно з ними пов’язане.

Потенціал електростатичного поля

Робота будь-якого електростатичного поля під час переміщення зарядженого тіла з однієї точки в іншу, як і робота однорідного поля, не залежить від форми траєкторії. На замкнутій траєкторії робота електростатичного поля рівна нулю. Поля, які мають таку властивість, називають потенціальними.

Потенціальна енергія заряду в електростатичному полі пропорційна заряду. Це справедливо як для однорідних, так і для неоднорідних полів. Отже, відношення потенціальної енергії до заряду не залежить від заряду, вміщеного в полі.

Це дає змогу ввести нову кількісну характеристику поля – потенціал. Потенціалом електростатичного поля називають відношення потенціальної енергії заряду в полі до величини цього заряду. Іншими словами, потенціал чисельно дорівнює енергії одиничного заряду в полі.

Теорема Гауса - один із основних законів електростатики, еквівалентний закону Кулона, твердження про зв'язок між потоком вектора електричної індукції через замкнену поверхню, і сумарним зарядом, в об'ємі, оточеному цією поверхнею. Теорема Гауса справедлива також для змінних полів і є одним із основних законів електродинаміки.

В системі СІ теорема Гауса має вигляд:

,

де D - вектор електричної індукції,   - сумарний електричний заряд в об'ємі, оточеному поверхнею S:

де   - густина заряду.

В гаусовій системі одиниць СГСГ теорема Гауса формулюється

,

де   - напруженість електричного поля.

Теорема Гауса і закон Кулона

Теорема Гауса була отримана в 1835 Карлом Фрідріхом Гаусом, який виходив із закону Кулона. В сучасній електродинаміці зазвичай застосовують протилежний підхід — за основу приймаються рівняння Максвела, одним із яких є теорема Гауса, а закон Кулона виводиться як наслідок.

Експериментальна перевірка справедливості закону Кулона з високою точністю набагато складніша від експериментальної перевірки теореми Гауса.

Вивід закону Кулона

Для того, щоб отримати закон Кулона з теореми Гауса, розглядають точковий електричний заряд   у вакуумі. На поверхні сфери радіусом  , в центрі якої розташований заряд, електричне поле повинно мати однакове значення, виходячи із міркувань симетрії. У вакуумі вектор електричної індукції   дорівнює напруженості електричного поля  (система СГС). Тому, застосовуючи теорему Гауса:

.

Звідси основне твердження закону Кулона:

В системі СІ  , де   - електрична стала. Теорема Гауса записується:

.

Звідси:

.

Теорема Гауса в диференціальній формі

Теорему Гауса можна записати у вигляді диференціального рівняння в часткових похідних, враховуючи формулу Остроградського-Гауса (система СГС):

.

Оскільки це співвідношення справедливе для будь-якого об'єму, рівними повинні бути й підінтегральні вирази:

.

В системі СІ цей вираз має вигляд:

Теорема Гауса для полів у середовищі

Теорема Гауса, як одне з основних рівнянь електродинаміки, загалом, справедлива і для середовища, у своїй основній формі. Наприклад, використовуючи систему СГС:

,

якщо під Q розуміти всі заряди, враховуючи мікроскопічні. Однак, присутність зовнішнього заряду призводить до перерозподілу мікроскопічних зарядів у речовині. Тому, якщо внести зовнішній заряд q в діелектрик, то деякі із мікроскопічних зарядів, змістившись, покинуть той об'єм, по якому проводиться інтегрування, інші - увійдуть у цей об'єм зовні - речовина поляризується.

Для врахування цих ефектів в електродинаміці суцільних середовищ усі заряди розділяються на вільні та зв'язані. Вільними вважаються ті заряди, які можна привнести зовні, зяряджаючи тіла, зв'язаними - електричні заряди електронів та ядер речовини, які в зовнішніх полях зміщуються, одні відносно інших, створюючи поляризацію:

,

де   - густина зв'язаних зарядів,   - густина вільних зарядів. Густина зв'язаних зарядів пов'язана з поляризацією:  .

Тоді теорема Гауса записується у вигляді

.

Вводячи вектор електричної індукції

,

отримуємо теорему Гауса для діелектричних середовищ:

,

або в диференціальній формі

.

Магнітне поле

Магнітні заряди (монополі) поки що експериментально не спостерігалися, тому магнітний потік через замкнену поверхню завжди дорівнює нулю:

Електричне поле зарядженої площини. Двох площин, сфери, циліндра, кулі.

· означення та зміст напруженості поля (сила, що діє на пробний заряд)  ;E=F/q;

· що виражає емпіричний закон Кулона

· принцип суперпозиції (наголошування на важливість векторних позначень) 

· Розподіл зарядів ( )

· Потік вектора Е ( )

· теорема Гауса

Потік вектора Е скрізь замкнуту поверхню дорівнює алгебраїчній сумі зарядів обмежених цією поверхнею, поділеної на  :

Приклад знаходження напруженості ел. поля нескінченно довгого тонкостінного циліндра

Р озв’язок:

У ході розв’язку треба наголошувати на причинах, за яких ми використовуємо теорему Гауса. Декілька раз підкреслювати, що поле має циліндричну симетрію.

Розбиття задачі на два етапи:

1) Знаходження поля всередині циліндра ( )

В ибираємо точку на відстані  від осі циліндра та проводимо крізь цю точку коаксіальний циліндр (рис. 1). Застосовуючи теорему Гауса, за відсутністю заряду всередині визначаємо, що 

2) Знаходження поля зовні циліндра ( )

Вибираємо точку на відстані  від осі циліндра та проводимо крізь цю точку коаксіальний циліндр. Застосовуємо теорему Гауса. Потік крізь торці обраного циліндра дорівнює нулеві, а потік крізь бокову поверхню в теоремі Гауса набуде вигляду:

;

(1) 

Приклад Знайти поле двох паралельних площин заряджених рівномірно різноіменими зарядами з густинами s та - s.

Розв’язок:

Ц е поле легко знайти як суперпозицію полів, що створюються кожною площиною окремо. Між площинами напруженості полів що додаються мають однаковий напрямок, тому напруженість отримана для однієї площини (дивись лекцію) подвоїться, та результуюча напруженість поля між площинами має вигляд:

(2) 

Зовні , легко побачити, що поле дорівнює нулю.

Поля систем розподілених зарядів.

Постійне втручання в індивідуальну роботу студентів

Слідкування за вірним напрямком ходу розв’язку

Індивідуальна робота по розв’язку задач: № 3.08, 3.10, 3.11, 3.14

Задача

Знайти поле нескінченного круглого циліндра, зарядженого рівномірно по поверхні, якщо подовжня густина - l.

Розв‘язок:

З точки зору симетрії поле має радіальний характер, так як вектор Е в кожній точці перпендикулярний до вісі циліндра, а модуль вектора напруженості залежить тільки від відстані r до вісі. Тоді замкнену поверхню треба обрати у формі коаксіального циліндру. В результаті по теоремі Гауса маю:

(3)  ;

(4)  (r>a), де а - радіус циліндру.

Коли r<a - E=0.

№3.08 Дано: q, R; E(0) - ?

Для даного напівкільця маємо:

(5) 

(6) 

№3.10 Дано: q, R, -q; E(x) - ? x»R

Повідомити студентів, що у цьому випадку треба буде застосувати формулу наближеного числення для малих  :

(7) 

Користуючись розв’язком минулої задачі - формулою (6), згідно принципу суперпозиції полів, знаходимо:

(8) 

(9) 

№3.11 Дано: R, q,  ; F(x) - ?

(10) 

Спираючись на отриманий на минулому занятті розв’язок задачі 3.9, та підставляючи його у формулу (10), отримаємо:

(11) 

Теорема Гаусса:

Напруженість електричного поля залежить тільки від Х та У як  , де а – постійна, і та j – орти осей ОХ та ОУ. Знайти заряд у сфері радіусом R з центром у початку координат.

Розв’язок:

З теореми Гауса:

(12) 

(13) 

(14) 

Куля радіусу R має додатній заряд, об‘ємна густина якого залежить тільки від відстані r до її центру як r = , де  - постійна, e=1. Знайти:

1) Модуль напруженості електричного поля в середині та зовні кулі як функцію від r.

2) Максимальне значення модуля напруженості  та  .

Розв’язок:

a) По теоремі Гауса:

У випадку r>R

(15) 

У випадку r<R

(16) 

б)  .

(17) 

Простір заповнено зарядом з об‘ємною густиною  де  та a - додатні постійні, r – відстань до центру системи. Знайти |E|=E(r).

Розв’язок:

З теореми Гауса:

(18)  .

(19)  .

Робота сил поля. Потенціал. Зв’язок потенціалу та напруженості.