Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекцій з вищої фізики 1 та 2 семестр.doc
Скачиваний:
30
Добавлен:
12.09.2019
Размер:
10.19 Mб
Скачать

Тема 11. Електричний струм в рідинах і в газах Електричний струм в рідинах та газах (2 год)

Мета: Визначити основні напрямки застосування електричного струму в різних середовищах.

План

  1. Термоелектронна емісія. Струм у вакуумі.

  2. Електровакуумні прилади.

  3. Електричний струм в газах

На практиці, в тому числі в військовій техніці зв’язку широко застосовуються електронні лампи, електронно-променеві трубки різного призначення й інші прилади, в яких використовується явище термоелектронної емісії. Важливою характеристикою явища термоелектронної емісії є робота виходу електрона, а також струм насичення термоемісії. Ці та інші характеристики термоемісії і будуть розглянуті в даній лекції. Крім цього будуть розглянуті питання, які існують інші види електронної емісії і як вони враховуються і використовуються на практиці. 

РОБОТА ВИХОДУ ЕЛЕКТРОНІВ ІЗ МЕТАЛУ  Для розуміння явища термоелектронної емісії, а також інших електронних явищ важливе значення має поняття роботи виходу електрона. Розглянемо це поняття.  Дослідами було виявлено, що вільними зарядами в металах являються електрони, причому вільних електронів в металах дуже багато   і рухаються вони хаотично (подібно молекулам ідеального газу) з великими швидкостями  . Отже, якщо швидкість будь-якого електрона буде перпендикулярна поверхні металу і він має запас кінетичної енергії, то електрон вилетить із металу і знаходитиметься поза металом певний час і потім повернеться в метал.  Розглянемо природу сил, які перешкоджають виходу електрона із метала.  При вилітанні електрона із нейтрального провідника в металі виникає індукований додатній заряд, рівний заряду електрона: кулонівська сила взаємодії притягає електрон до металу, тому електрон буде рухатись рівносповільнено, на якійсь віддалі (  ) зупинеться, а потім буде рухатись до металу ( рис. I).  Рис. 1  2. На відстані   електрон буде найбільший час, тому навколо металу виникне електронна хмара, заряджена буде негативно, а поверхня металу буде заряджена позитивно і знаходитиметься під потенціалом +j, який називається потенціалом виходу, або граничним потенціалом.  Таким чином: на межі метал-вакуум виникає своєрідний конденсатор, поле якого протидіє вилітанню електронів із металу.  Ці дві причини перешкоджають вилітанню електрона із металу, і щоб електрон вилетів йому необхідно виконати певну роботу для подолання сили протидії.  Найменша робота, необхідна для того, щоб електрон вилетів із твердого тіла, або рідини в вакуум називається роботою виходу електрона.  Так, як  ,  причому  , то A = ej, де j - потенціал виходу. В СІ робота виходу вимірюється в джоулях, а на практиці в електрон-вольтах.  Один електронвольт- це енергія, яку одержує електрон, пролетівши різницю потенціалів в I В.  Отже, для того, щоб електрон вилетів із твердого тіла, чи рідини йому необхідно надати енергію хоча б рівну роботі виходу. З цього випливає, що тілоє для електрона потенціальною ямою, яку він не може вільно залишити. Причому потенціальна енергія електрона  (заряд електрона негативний), а потенціальна енергія електрона в вакуумі  . Тому схематично положення електрона в твердому тілі чи рідині зображається за допомогою потенціальної ями, в якій по осі Y відкладається потенціальна енергія, а по осі X- лінійні розміри тіла (рис. 2).    Рис. 2  Згідно класичної фізики електрони в металі подібні молекулам ідеального газу і їх кінетична енергія  ,  а при T = 0,  і всі електрони знаходяться на дні потенціальної ями, при цьому робота виходу електрона дорівнює глибині потенціальної ями (рис. 3).    Рис. 3  Але в металів немає нерухомих електронів. І згідно квантової механіки. навіть при T = 0електрони мають значну кінетичну енергію. Причому найбільшу кінетичну енергію при абсолютному нулеві температури називають енергією фермі -  , тому робота виходу  .  Для різних металів робота виходу електрона неоднакова і значною мірою залежить від стану його поверхні, та від природи абсорбованих поверхнеюметалу атомів і молекул. Наприклад: для чистого вольфраму А=4,5 еВ, а якщо на вольфрам нанести тонкий шар барію, то А=1,36 еВ.  ТЕРМОЕЛЕКТРОННА ЕМІСІЯ. НАЙПРОСТІШІ ЕЛЕКТРОВАКУУМНІ ПРИЛАДИ  Явище виривання електронів з металів називають емісією. Емісія електронів може відбуватись під дією різних причин.  Термоелектронною називають емісію, зумовлену тепловим рухом електронів.  В металах концентрація електронів велика і в наслідок хаотичного руху окремі електрони час від часу можуть мати кінетичну енергію  рівну або більшу роботі виходу і вилітатимуть з металу.  При кімнатних температурах дуже мала частина електронів вилетіти із металу. З підвищенням температури швидкість електронів зростає і число електронів, що вилітають із металу. Це явище повністю аналогічне процесу випаровування молекул із нагрітої рідини.  Дослідження термоелектронної емісії зручно проводити з допомогою схеми, зображеної на рис. 4.    Рис. 4  В скляний балон, з якого відкачане повітря, впаяні два електроди – холодний анод А і катод К (лампа-діод). Катод являє собою спіраль з досліджуваного матеріалу, нагрівається від батареї Бн. З нагрітого катода вилітають електрони і навколо катоду утворюється просторовий заряд – електронна „хмара”. З допомогою Ба та потенціометра   між катодом і анодом можна створювати різну напругу  , яка вимірюється вольтметром. Під дією прикладеної між катодом і анодом напруги, електрони, що вилетіли з катода рухаються до аноду і створюють струм  , який вимірюється міліамперметром. Змінюючи напругу   і вимірюючи   будують залежність  Залежність анодного струму   від напруги, прикладеної між катодом і анодом   називають вольт-амперною характеристикою термоелектронної емісії (ВАХ). Досліди показують, що залежність між силою анодного струму та напругою (рис. 5) має нелінійний характер, тобто закон Ома не виконується.    Рис. 5  Це пояснюється тим, що при малих напругах тільки частина електронів просторового заряду біля катода під дією поля досягає аноду. Але чим більше буде напруга, тим більше буде електронів з „хмари” досягати аноду. Причому початкові ділянки вольт-амперних характеристик діодів для різних температур однакові. Теоретичні дослідження (Богуславський і Ленглюр) показали, що в області просторового заряду залежність термоелектронного струму від напруги (АВ) має вигляд:  закон степені 3/2,  де К-стала, яка характеризує розміри і форму електродів і не залежить від температури катода. А починаючи з деякої напруги   всі електрони, що вилітають з катода, досягають анода, просторового заряду навколо катоду немає, тому при збільшенні напруги анодний струм залишається сталим – це максимальне значення анодного струму називають струмом насичення  . Відношення струму насичення до площі катода S називають густиною струму насичення. 

За допомогою квантової фізики Річардсон і Дешман отримали вираз для густини струму насичення.   / I /  де B- стала величина, ej - робота виходу електрону з металу, к - стала Больцмана, Т- абсолютна температура катоду.  Формулу / I / називають формулою Річардсона-Дешмана. Із цієї формули слідує, що густина струму насичення різко збільшується із збільшенням температури катоду та з зменшенням роботи виходу електрона.  Наприклад, як показують розрахунки, для чистої поверхні вольфраму (ej = 4,5eB) при збільшенні температури з   густина струму насичення збільшується в   раз, а коли при сталій температурі Т=1000 К порівняти густину струму насичення при  і  , то густина струму збільшується в   раз.  Досліди показують, що реальна густина струму насичення менша, ніж та, що одержується за формулою / I / , це пояснюється тим, що частина електронів, що вилетіла з катоду повертається знову на катод. Тому замість сталої B в формулу вводять  ,  де g - так званий коефіцієнт відбивання Шотткі.  Явище термоелектронної емісії широко використовується на практиці в електронних лампах, електронно-променевих трубках й інших електровакуумних приладах. Найпростішими електровакуумними приладами є лампи діод і тріод.  Як відмічалось, лампа діод являє собою скляний або металевий балон, з якого відкачане повітря і в якому розміщені два електроди анод та катод, який може нагріватися:    Особливістю діода є те, що він пропускає струм лише в одному напрямку і широко використовується для випрямлення змінного струму, а також детектування сигналів.  Більш складною є лампа тріод - третім електродом є керуюча сітка, з допомогою можна керувати анодним струмом, тому сітка називається керуючою.    Лампа тріод широко використовується для підсилення напруги - підсилення слабких сигналів електромагнітних коливань, що виникають в антені радіоприймача й ін. 

ІНШІ ВИДИ ЕЛЕКТРОННОЇ ЕМІСІЇ  Енергію, необхідну електронам для вилітання із металу, можна надати не тільки при нагріванні, але й іншими шляхами. Так електрони вилітають із металу, поміщеному в сильне електричне поле – це автоелектронна емісія або холодна емісія.  Виривання електронів під дією світла називають фотоелектронною емісією. Причому падаючі електрони називають первинними, а вибиті - вторинними.  Відношення кількості вторинних електронів n до числа первинних електронів   називається коефіцієнтом вторинної емісії  Число вирваних електронів в великій мірі, залежить від природи речовини – емітера. В металах, де велика густина вільних електронів вторинні електрони внаслідок великого числа зіткнень з вільними електронами втрачають свою енергію і мають малу ймовірність вилетіти з металу. Навпаки, в напівпровіднику, де густина вільних електронів збільшується. Тому не існує металів з великим d. І ефективні емітери вторинних електронів виготовляють із напівпровідників та діелектриків.  Значення d для металів не перевищує 2, а для напівпровідників 6-18.  Явище вторинної електронної емісії лежить в основі дії електронних помножувачів, які призначені для підсилення слабких електронних струмів, світлових сигналів. За допомогою таких помножувачів можна отримати коефіцієнт підсилення первинного струму порядку  .  В електронних лампах вторинна емісія із аноду шкідлива (вона зменшує анодний струм), тому в лампах вводиться спеціальна сітка, яка змушує вторинні електрони повертатись до аноду.  Автоелектронна емісія спостерігається з металів, які знаходяться в сильному електричному полі (  В/м). Причому процес автоелектронної або холодної емісії принципово відрізняється від термоелектронної емісії. При термоелектронній, або іншій емісії, щоб електрон вилетів із металу йому необхідно надати енергію.  А при автоелектронній емісії електрони вилітають внаслідок тунельного ефекту, фізична суть якого розкривається в квантовій механіці.  ВИСНОВКИ  Для вильоту електрону із речовини, йому необхідно мати енергію, щонайменше, рівну роботі виходу, яка залежить від хімічної природи речовини і, в значній мірі, від стану поверхні речовини. Тому в електронних лампах широко використовуються оксидні катоди.  Явище термоелектронної емісії спостерігається при нагріванні електродів (катодів), воно широко використовується на практиці в електронних лампах, електронно-променевих трубках та ін. Причому густина струму насичення різко збільшується при підвищенні температури катода та при зменшенні роботи виходу.  Крім термоемісії існують інші її види – вторинна електронна емісія, автоемісія й ін. Ці явища враховуються і використовуються на практиці – в електронних лампах, фотопомножувачах тощо. 

Загалом гази не проводять електричний струм або мають низьку електропровідність, оскільки їхні молекули нейтральні, проте якщо частина атомів газу йонізується, він стає здатним до проводження електричного струму. В газах також можливі газові розряди або при іонізації зовнішнім джерелом, або внаслідок ударної іонізації в самому розряді.

Один із видів йонізації газів — термічна йонізація. При цьому атоми газу йонізуються за рахунок зіткнень між атомами внаслідок підвищення температури — атоми набувають кінетичної енергії, достатньої для звільнення електрона від атома. Проте температури, за яких атоми газів набувають достатньої кінетичної енергії, високі (наприклад, для водню це значення 6 000 К).

Другий вид йонізації газів — йонізація електричним ударом. Дана йонізація відбувається і при низьких температурах внаслідок перевищення напруженості електричного поля в газі певного значення, що зумовлює вихід електрона з атома. Іноді виникають також самостійні електричні розряди, що зумовлюється зіткненням фотонів або позитивних йонів з катодом і ланцюгове повторення реакції, в процесі чого також відбувається збудження атомів газу. Прикладом самостійного електричного розряду є блискавка. Гази, молекули яких за йонізації перетворюються на суміш йонів та електронів, називаються плазмою.

При нагріванні катода електричним розрядом з великою силою струму відбувається його нагрівання до міри термоелектронної емісії електронів з нього (дуговий розряд).

1 Іонізація, газів 2. Самостійний розряд. 3. Типи самостійних газових розрядів. 3.1. Іскровий розряд. 3.2. Дуговий розряд. 3.3. Тліючий розряд. 3.4. Коронний розряд. Іонізація газів За звичайних умов (не занадто високі температури; тиски, близькі до атмосферного) гази складаються з нейтральних атомів і молекул і не містять вільних зарядів (електронів та іонів). Тому струм вони не проводять, іншими словами, є ізоляторами. Наприклад, якщо в сухе атмосферне повітря помістити заряджений електрометр із доброю ізоляцією, то його заряд довго залишається незмінним. Щоб газ почав проводити електричний струм, потрібно створити в ньому вільні носії заряду, тобто заряджені частинки. Цей процес називається іонізацією газу. При цьому в газі відбувається розщеплення нейтральних атомів і молекул на іони і вільні електрони. Іонізувати газ можна двома шляхами: 1) заряджені частинки вносяться в газ ззовні або створюються дією якого-небудь зовнішнього фактора; 2) заряджені частинки створюються в газі дією електричного поля. У залежності від способу іонізації електропровідність газів (розряд у газах) називається несамостійною (1) і самостійною (2). Під дією іонізатора з електронної оболонки атома або молекули виривається один або кілька електронів. Атом (або молекула) перетворюється на позитивний іон (катіон), і утворюються вільні електрони. Вони, у свою чергу, приєднуються до нейтральних молекул і атомів, перетворюючи їх на негативні іони (аніони). Таким чином, в іонізованому газі Містяться катіони, аніони і вільні електрони. Часто катіони та аніони являють собою не з'єднані іонізовані молекули, а групи молекул, що «прилипли» до негативного або позитивного іона. Тому їхня маса набагато більша, ніж маса окремого атома або молекули. Для опису іонної провідності не можна використовувати ані закони Фарадея, ані закон Ома. Закони Фарадея для газів утрачають зміст у силу того, що в розчинах електролітів частинки являють собою або певні атоми, або певні групи атомів, а в газах конгломерати частинок можуть бути якими завгодно. Закон Ома для газів виконується тільки при малих напругах. Тоді, як і у випадку провідників, що підкоряються законові Ома, залежність сили струму від напруги (тобто вольтамперна характеристика) для них матиме вигляд: Зі збільшенням напруги вольтамперна характеристика для газів набуває складнішого вигляду: Проаналізуємо цю криву. На ділянці ОА (малі напруги) графік показує, що сила струму пропорційна напрузі. На цьому проміжку відбувається збільшення кількості іонів, що проходять за одиницю часу через перетин розряду, а отже, збільшується і сила струму, оскільки швидкість заряджених частинок зростає з посиленням поля. Але незалежно від швидкості руху, кількість частинок, що проходить через розряд за одиницю часу, не може бути більшою за кількість частинок, що утвориться в газі під впливом іонізатора. Ця величина і визначає значення струму насичення. Наведемо приклад розрахунку струму насичення (Iнас). Нехай іонізатор створює за 1 секунду 2 мільйони пар іонів, кожен із яких має заряд 1,5•10-19 Кл. Тоді величина струму насичення дорівнюватиме найбільшому зарядові, що проходить через газ за 1 секунду: Як бачимо, величина струму насичення залежить від іонізуючої здатності іонізатора, а не від напруги. Трапляються випадки, коли струму насичення немає. Це відбувається, якщо іонізуюча здатність іонізатора настільки велика, що навіть при великих напругах електричне поле не встигає відводити всі утворені іони. Подібну картину ми можемо спостерігати в розчинах електролітів, коли швидкість утворення іонів у результаті електричної дисоціації дуже велика. Іонізаторами газів можуть виступати різні зовнішні впливи. Наприклад, у результаті сильного нагрівання швидкість молекул зростає, і їхні зіткнення стають настільки сильними, що вони розбиваються на іони. Таким чином, іонізатором виступає сильне нагрівання. Крім того, іонізувати газ може короткохвильове електромагнітне випромінювання (УФ, рентгенівське, у-випромінювання), корпускулярне випромінювання (потоки електронів, протонів, а-частинок) тощо. Для того щоб вибити з молекули або атома один електрон, треба витратити певну енергію, необхідну для здійснення роботи іонізації — роботи проти сил взаємодії між електроном, що виривається, та іншими частинками атома або молекули. Вона називається енергією іонізації. Зазвичай її значення коливається для різних атомів у межах від 4 до 25 еВ. Величина роботи іонізації залежить від хімічної природи газу й енергетичного стану електрона, що виривається, в атомі або молекулі. Процес іонізації має кількісну характеристику — інтенсивність іонізації. Вона вимірюється числом пар іонів, протилежних за знаком, що виникають в одиниці об'єму газу за одиницю часу.

Електричний струм у газах. Несамостійний і самостійний розряди. Поняття про плазму

За звичайних умов гази майже повністю складаються із нейтральних атомів чи молекул, тому є діелектриками. Для того, щоб газ почавпроводити електричний струм, його потрібно забезпечити вільними електричними зарядами. Для цього можна:

1) нагріти газ (З підвищенням температури теплові рухи молекул газу призведуть до втрати електронів молекулами, а отже, й утворення позитивно заряджених іонів. Деякі нейтральні молекули приймуть вільні електрони і стануть негативно зарядженими іонами, крім того, самі вільні електрони зможуть створити струм. Чим вища температура, тим більше вільних електронів.);

2) помістити в газ джерело радіоактивного випромінювання;

3) помістити в газ нагріту металеву нитку, з якої будуть випаровуватись вільні електрони, які і створять струм.

Отже, щоб газ проводив електричний струм, в нього треба помістити іонізатор. Завдяки іонізації в газі утворюються вільні носії електричного заряду - іони та електрони.

Процес проходження електричного струму через газ називають газовим розрядом.

Після припинення дії іонізатора газ перестає бути провідником. Струм припиняється після того, як усі іони й електрони досягнуть електродів. Крім того, під час зближення електрон і позитивно заряджений іон можуть знову втратити нейтральний атом. Такий процес називаютьрекомбінацією заряджених частинок.

Помістимо в газ два металеві електроди, до яких прикладено напругу U. Тиск газу в трубці бажано знизити. Помістимо в трубці іонізатор, який буде утворювати певне число вільних зарядів за одиницю часу (рис. 4.3.5). Постійно підвищуючи напругу, будемо вимірювати силу струму вколі. Результати нанесемо на графік (рис. 4.3.6).

Значення сили струму в газі буде зростати зі збільшенням прикладеної напруги, згідно із законом Ома для ділянки кола, а коли досягне деякого значення, стане незмінним, що вкаже на стан насиченості в трубці. Це означає, що всі носії, які утворює іонізатор, беруть участь у створенні струму. Якщо дію іонізатора припинити, то припиниться і розряд, оскільки інших джерел іонів немає. Тому такий розряд називаютьнесамостійним.

Будемо і далі продовжувати підвищувати напругу на електродах. За деякої граничної напруги в трубці знову почне зростати сила струму (рис. 4.3.7).

Це означає, що в газі з'являються додаткові іони до тих, що утворилися внаслідок дії іонізатора. Сила струму при цьому може зрости в сотні разів, а число іонів, які виникнуть у процесі розряду, може стати таким великим, що зовнішній іонізатор буде вже непотрібним для підтримання розряду. Якщо забрати зовнішній іонізатор, то розряд не припиниться. Розряд, який може існувати без зовнішнього іонізатора, називаютьсамостійним розрядом.

Причиною різкого збільшення сили струму у разі великих напруг (рис. 4.3.7) є зростання кінетичної енергії електронів, що утворилисявнаслідок дії зовнішнього іонізатора. На своєму шляху електрон зіштовхується з іонами і нейтральними атомами. Кінетична енергія електрона перед черговим зіткненням пропорційна напруженості поля і довжині вільного пробігу електрона (шляху між двома послідовними зіткненнями):

.

Якщо кінетична енергія електрона більша за роботу іонізації Ai, яку треба виконати, щоб іонізувати нейтральний атом, тобто

,

то під час зіткнення електрона з атомом відбувається іонізація. Кількість заряджених частинок швидко наростає, виникає електронна лавина. Цей процес називають іонізацією електронним ударом. Однак цього замало. Для підтримання такого розряду потрібна емісія електронів з катода. Цьому сприяють швидкі позитивні іони, що утворюються після зіткнення електронів з нейтральними атомами і внаслідок дії електричного полявдаряються об катод.

Залежно від властивостей і стану газу, а також від якостей і розміщення електродів, прикладеної до них напруги виникають різні види самостійного розряду в газах. Якщо тиск низький, виникає тліючий розряд. За атмосферного тиску можна отримати електричну дугукороннийта іскровий розряди.

Тліючий розряд використовують у газоосвітлювальних лампах. Електрична дуга є потужним джерелом світла і широко використовується впрожекторах, установках для зварювання і різання металів тощо. Прикладом велетенського іскрового розряду є блискавка. Іскровий розрядвикористовують для запалення суміші палива і повітря у двигунах внутрішнього згоряння, для точної обробки металів тощо.

Коронний розряд, що виникає за атмосферного тиску поблизу загострених ділянок провідника, у разі великого заряду має вигляд корони, що світиться навколо вістря. Його використовують в електричних фільтрах для очищення промислових газів від домішок.

Якщо температури досить високі, розпочинається іонізація газу через зіткнення атомів чи молекул, які швидко рухаються. Речовина переходить в новий стан - плазму.

Плазма - це частково чи повністю іонізований газ, в якому густини позитивних і негативних зарядів майже збігаються. Плазма вважається четвертим станом речовини. У повністю іонізованій плазмі електрично нейтральних атомів немає, тому плазма дуже добре проводить струм. У цілому плазма являє собою електрично нейтральну систему.

Поряд з нагріванням іонізація газу і утворення плазми можуть бути викликані різними способами, наприклад, бомбардуванням атомів газу швидкими зарядженими частинками. При цьому утворюється низькотемпературна плазма.

Через велику рухливість заряджених частинок у плазмі, вони легко переміщуються під дією електричного і магнітного полів, тому будь-які локальні порушення електронейтральності плазми швидко ліквідуються.

На відміну від нейтрального газу, між молекулами якого є короткодіючі сили, між зарядженими частинками плазми діють кулонівські сили, які порівняно повільно зменшуються з відстанню. Кожна частинка взаємодіє одночасно з багатьма навколишніми частинками. Завдяки цьому частинки можуть брати участь не тільки в хаотичному тепловому русі, а і в упорядкованих (колективних) рухах. У плазмі легко збуджуються різні коливання й хвилі.

Провідність плазми підвищується зі зростанням ступеня іонізації. За високої температури повністю іонізована плазма за своєю провідністю наближається до надпровідників.

У стані плазми перебуває близько 90 % речовини Всесвіту (Сонце, зорі, міжзоряний простір).

Плазма оточує нашу планету. Верхній шар атмосфери на висоті 100 - 300 км є іонізованим газом - іоносферою. Полум'я запаленого сірника це також плазма.

Плазма виникає при всіх видах розряду в газах: тліючому, дуговому, іскровому тощо. Таку плазму називають газорозрядною. Їївикористовують у лазерах.

Струмінь плазми застосовують у магнітогідродинамічних генераторах, плазмотронах. Потужні струмені плазми застосовують для різання і зварювання металів, буріння свердловин, прискорення перебігу хімічних реакцій тощо.

Найбільші перспективи фізики вбачають у застосуванні високотемпературної плазми (T > 108 К) для створення керованих термоядерних реакцій.