
- •Contents
- •Preface
- •Chapter 1 Introduction (K. Fujimoto)
- •Chapter 2 Small antennas (K. Fujimoto)
- •Chapter 3 Properties of small antennas (K. Fujimoto and Y. Kim)
- •Chapter 4 Fundamental limitation of small antennas (K. Fujimoto)
- •Chapter 5 Subjects related with small antennas (K. Fujimoto)
- •Chapter 6 Principles and techniques for making antennas small (H. Morishita and K. Fujimoto)
- •Chapter 7 Design and practice of small antennas I (K. Fujimoto)
- •Chapter 8 Design and practice of small antennas II (K. Fujimoto)
- •Chapter 9 Evaluation of small antenna performance (H. Morishita)
- •Chapter 10 Electromagnetic simulation (H. Morishita and Y. Kim)
- •Chapter 11 Glossary (K. Fujimoto and N. T. Hung)
- •Acknowledgements
- •1 Introduction
- •2 Small antennas
- •3 Properties of small antennas
- •3.1 Performance of small antennas
- •3.1.1 Input impedance
- •3.1.4 Gain
- •3.2 Importance of impedance matching in small antennas
- •3.3 Problems of environmental effect in small antennas
- •4 Fundamental limitations of small antennas
- •4.1 Fundamental limitations
- •4.2 Brief review of some typical work on small antennas
- •5 Subjects related with small antennas
- •5.1 Major subjects and topics
- •5.1.1 Investigation of fundamentals of small antennas
- •5.1.2 Realization of small antennas
- •5.2 Practical design problems
- •5.3 General topics
- •6 Principles and techniques for making antennas small
- •6.1 Principles for making antennas small
- •6.2 Techniques and methods for producing ESA
- •6.2.1 Lowering the antenna resonance frequency
- •6.2.1.1 SW structure
- •6.2.1.1.1 Periodic structures
- •6.2.1.1.3 Material loading on an antenna structure
- •6.2.2 Full use of volume/space circumscribing antenna
- •6.2.3 Arrangement of current distributions uniformly
- •6.2.4 Increase of radiation modes
- •6.2.4.2 Use of conjugate structure
- •6.2.4.3 Compose with different types of antennas
- •6.2.5 Applications of metamaterials to make antennas small
- •6.2.5.1 Application of SNG to small antennas
- •6.2.5.1.1 Matching in space
- •6.2.5.1.2 Matching at the load terminals
- •6.2.5.2 DNG applications
- •6.3 Techniques and methods to produce FSA
- •6.3.1 FSA composed by integration of components
- •6.3.2 FSA composed by integration of functions
- •6.3.3 FSA of composite structure
- •6.4 Techniques and methods for producing PCSA
- •6.4.2 PCSA employing a high impedance surface
- •6.5 Techniques and methods for making PSA
- •6.5.2 Simple PSA
- •6.6 Optimization techniques
- •6.6.1 Genetic algorithm
- •6.6.2 Particle swarm optimization
- •6.6.3 Topology optimization
- •6.6.4 Volumetric material optimization
- •6.6.5 Practice of optimization
- •6.6.5.1 Outline of particle swarm optimization
- •6.6.5.2 PSO application method and result
- •7 Design and practice of small antennas I
- •7.1 Design and practice
- •7.2 Design and practice of ESA
- •7.2.1 Lowering the resonance frequency
- •7.2.1.1 Use of slow wave structure
- •7.2.1.1.1 Periodic structure
- •7.2.1.1.1.1 Meander line antennas (MLA)
- •7.2.1.1.1.1.1 Dipole-type meander line antenna
- •7.2.1.1.1.1.2 Monopole-type meander line antenna
- •7.2.1.1.1.1.3 Folded-type meander line antenna
- •7.2.1.1.1.1.4 Meander line antenna mounted on a rectangular conducting box
- •7.2.1.1.1.1.5 Small meander line antennas of less than 0.1 wavelength [13]
- •7.2.1.1.1.1.6 MLAs of length L = 0.05 λ [13, 14]
- •7.2.1.1.1.2 Zigzag antennas
- •7.2.1.1.1.3 Normal mode helical antennas (NMHA)
- •7.2.1.1.1.4 Discussions on small NMHA and meander line antennas pertaining to the antenna performances
- •7.2.1.2 Extension of current path
- •7.2.2 Full use of volume/space
- •7.2.2.1.1 Meander line
- •7.2.2.1.4 Spiral antennas
- •7.2.2.1.4.1 Equiangular spiral antenna
- •7.2.2.1.4.2 Archimedean spiral antenna
- •7.2.2.1.4.3.2 Gain
- •7.2.2.1.4.4 Radiation patterns
- •7.2.2.1.4.5 Unidirectional pattern
- •7.2.2.1.4.6 Miniaturization of spiral antenna
- •7.2.2.1.4.6.1 Slot spiral antenna
- •7.2.2.1.4.6.2 Spiral antenna loaded with capacitance
- •7.2.2.1.4.6.3 Archimedean spiral antennas
- •7.2.2.1.4.6.4 Spiral antenna loaded with inductance
- •7.2.2.2 Three-dimensional (3D) structure
- •7.2.2.2.1 Koch trees
- •7.2.2.2.2 3D spiral antenna
- •7.2.2.2.3 Spherical helix
- •7.2.2.2.3.1 Folded semi-spherical monopole antennas
- •7.2.2.2.3.2 Spherical dipole antenna
- •7.2.2.2.3.3 Spherical wire antenna
- •7.2.2.2.3.4 Spherical magnetic (TE mode) dipoles
- •7.2.2.2.3.5 Hemispherical helical antenna
- •7.2.3 Uniform current distribution
- •7.2.3.1 Loading techniques
- •7.2.3.1.1 Monopole with top loading
- •7.2.3.1.2 Cross-T-wire top-loaded monopole with four open sleeves
- •7.2.3.1.3 Slot loaded with spiral
- •7.2.4 Increase of excitation mode
- •7.2.4.1.1 L-shaped quasi-self-complementary antenna
- •7.2.4.1.2 H-shaped quasi-self-complementary antenna
- •7.2.4.1.3 A half-circular disk quasi-self-complementary antenna
- •7.2.4.1.4 Sinuous spiral antenna
- •7.2.4.2 Conjugate structure
- •7.2.4.2.1 Electrically small complementary paired antenna
- •7.2.4.2.2 A combined electric-magnetic type antenna
- •7.2.4.3 Composite structure
- •7.2.4.3.1 Slot-monopole hybrid antenna
- •7.2.4.3.2 Spiral-slots loaded with inductive element
- •7.2.5 Applications of metamaterials
- •7.2.5.1 Applications of SNG (Single Negative) materials
- •7.2.5.1.1.2 Elliptical patch antenna
- •7.2.5.1.1.3 Small loop loaded with CLL
- •7.2.5.1.2 Epsilon-Negative Metamaterials (ENG MM)
- •7.2.5.2 Applications of DNG (Double Negative Materials)
- •7.2.5.2.1 Leaky wave antenna [116]
- •7.2.5.2.3 NRI (Negative Refractive Index) TL MM antennas
- •7.2.6 Active circuit applications to impedance matching
- •7.2.6.1 Antenna matching in transmitter/receiver
- •7.2.6.2 Monopole antenna
- •7.2.6.3 Loop and planar antenna
- •7.2.6.4 Microstrip antenna
- •8 Design and practice of small antennas II
- •8.1 FSA (Functionally Small Antennas)
- •8.1.1 Introduction
- •8.1.2 Integration technique
- •8.1.2.1 Enhancement/improvement of antenna performances
- •8.1.2.1.1 Bandwidth enhancement and multiband operation
- •8.1.2.1.1.1.1 E-shaped microstrip antenna
- •8.1.2.1.1.1.2 -shaped microstrip antenna
- •8.1.2.1.1.1.3 H-shaped microstrip antenna
- •8.1.2.1.1.1.4 S-shaped-slot patch antenna
- •8.1.2.1.1.2.1 Microstrip slot antennas
- •8.1.2.1.1.2.2.2 Rectangular patch with square slot
- •8.1.2.1.2.1.1 A printed λ/8 PIFA operating at penta-band
- •8.1.2.1.2.1.2 Bent-monopole penta-band antenna
- •8.1.2.1.2.1.3 Loop antenna with a U-shaped tuning element for hepta-band operation
- •8.1.2.1.2.1.4 Planar printed strip monopole for eight-band operation
- •8.1.2.1.2.2.2 Folded loop antenna
- •8.1.2.1.2.3.2 Monopole UWB antennas
- •8.1.2.1.2.3.2.1 Binomial-curved patch antenna
- •8.1.2.1.2.3.2.2 Spline-shaped antenna
- •8.1.2.1.2.3.3 UWB antennas with slot/slit embedded on the patch surface
- •8.1.2.1.2.3.3.1 A beveled square monopole patch with U-slot
- •8.1.2.1.2.3.3.2 Circular/Elliptical slot UWB antennas
- •8.1.2.1.2.3.3.3 A rectangular monopole patch with a notch and a strip
- •8.1.2.1.2.3.4.1 Pentagon-shape microstrip slot antenna
- •8.1.2.1.2.3.4.2 Sectorial loop antenna (SLA)
- •8.1.3 Integration of functions into antenna
- •8.2 Design and practice of PCSA (Physically Constrained Small Antennas)
- •8.2.2 Application of HIS (High Impedance Surface)
- •8.2.3 Applications of EBG (Electromagnetic Band Gap)
- •8.2.3.1 Miniaturization
- •8.2.3.2 Enhancement of gain
- •8.2.3.3 Enhancement of bandwidth
- •8.2.3.4 Reduction of mutual coupling
- •8.2.4 Application of DGS (Defected Ground Surface)
- •8.2.4.2 Multiband circular disk monopole patch antenna
- •8.2.5 Application of DBE (Degenerated Band Edge) structure
- •8.3 Design and practice of PSA (Physically Small Antennas)
- •8.3.1 Small antennas for radio watch/clock systems
- •8.3.2 Small antennas for RFID
- •8.3.2.1 Dipole and monopole types
- •8.3.2.3 Slot type antennas
- •8.3.2.4 Loop antenna
- •Appendix I
- •Appendix II
- •References
- •9 Evaluation of small antenna performance
- •9.1 General
- •9.2 Practical method of measurement
- •9.2.1 Measurement by using a coaxial cable
- •9.2.2 Method of measurement by using small oscillator
- •9.2.3 Method of measurement by using optical system
- •9.3 Practice of measurement
- •9.3.1 Input impedance and bandwidth
- •9.3.2 Radiation patterns and gain
- •10 Electromagnetic simulation
- •10.1 Concept of electromagnetic simulation
- •10.2 Typical electromagnetic simulators for small antennas
- •10.3 Example (balanced antennas for mobile handsets)
- •10.3.2 Antenna structure
- •10.3.3 Analytical results
- •10.3.4 Simulation for characteristics of a folded loop antenna in the vicinity of human head and hand
- •10.3.4.1 Structure of human head and hand
- •10.3.4.2 Analytical results
- •11 Glossary
- •11.1 Catalog of small antennas
- •11.2 List of small antennas
- •Index

8.2 Design and practice of PCSA |
345 |
|
|
ω
Unit cell length λg/2
|
|
|
−π |
|
K |
π |
|
|
|
|
|
|
|
|
(a) |
|
|
|
(b) |
|
|
ω |
|
3.00 |
|
|
|
|
|
|
|
|
|
|
|
Bandgap |
(GHz) |
2.90 |
|
RBE |
|
|
|
|
|
|
||
|
|
2.80 |
DBE |
|
|
|
|
|
Frequency |
|
|
|
|
|
|
2.70 |
|
|
|
|
|
|
2.60 |
|
|
|
|
|
|
|
|
|
|
|
−π |
π |
|
2.50 |
0.8π |
0.9π |
π |
|
0.7π |
|||||
|
K |
|
|
|
K |
|
|
(c) |
|
|
|
(d) |
|
Figure 8.96 (a) Simple printed loop antenna, (b) dispersion characteristics of a unit cell forming the rectangular loop antenna, (c) bending k–ω characteristics to shift resonance to lower frequencies, and (d) magnified view of the dispersion characteristics around the band edge ([83], copyright C 2009 IEEE).
DGS [78], which has a potential of a number of applications, where the reconfiguration performance is required.
8.2.5Application of DBE (Degenerated Band Edge) structure
EBG structures have unique properties of frequency bandgap and group delay diminishing (∂ω/∂k = 0) near the bandgap. This property has been employed to improve antenna performance in various ways as was described in previous sections. In order to realize miniaturization of antennas, the typical common techniques are lowering the resonance frequency and reducing the wave velocity in the antenna structure. Reducing the band edge frequency of the EBG structure satisfies this concept. However, if lowering the band edge frequency can be realized, further downsizing of the antenna will be possible. The DBE structure is a device that can be harnessed.
The general properties and applications of DBE structure have been discussed in detail by J. L. Volakis [79–83]. The concept of emulating the DBE structure, not using materials like a crystal, but a microstrip substrate is demonstrated by a printed loop structure, for
example, as depicted in Figure 8.96(a) [83]. Lowering the band edge frequency can

346 |
Design and practice of small antennas II |
|
|
Uncoupled-A1 |
Uncoupled-A1 |
Coupled-A2 |
|
ε |
|
Figure 8.97 Concept of creating a DBE surface on a microstrip substrate using a pair of coupled and uncoupled transmission lines ([83], copyright C 2009 IEEE).
be explained by using the dispersion diagram of Figure 8.96(b), which is generated by using a half of the loop as the unit cells to form the periodic structure shown in the Figure 8.96(a). The loop consists of two unit cells formed by the top and bottom half loops. Two traces on the dispersion diagram (Figure 8.96(b)) indicate two propagating modes of either positive or negative k, and resonance frequencies are given at points k = ± π and 0, because these points are associated with phases of matching for two propagating waves on the loop. To achieve lower resonance frequency, it is necessary to lower the k–ω curve at k = π as shown in Figure 8.96(c). This can be achieved by using DBE structure, which exhibits a 4th-order k–ω curve, descending more sharply around the band edge than conventional EBG structure having a 2nd-order k–ω curve as shown in Figure 8.96(d).
A practical structure to replace a volumetric DBE material (crystal) composed of misaligned anisotropic layers can be equivalently implemented by coupled and uncoupled transmission line pairs printed on a uniform substrate as shown in Figure 8.97 [83]. A microstrip (MS) DBE antenna composed of two-circularly cascaded unit cells designed for resonance at 2.59 GHz is illustrated in Figure 8.98. The antenna has broadside gain of 6.9 dB at 2.59 GHz with 0.8% bandwidth for |S11| < –10 dB. A physical footprint of the antenna on the Duroid substrate (εr = 2.2) is λ0/4.3 × λ0/5. The radiated field is linearly polarized and the radiation efficiency is over 95%. The narrow bandwidth can be improved by using a thicker substrate. By changing the substrate thickness from 250 mils to 500 mils, the bandwidth increased to 8.7%, but with lowered resonance frequency to 2.3 GHz and reduced gain to 6.2 dB. As the antenna features a highly concentrated field at the center of the antenna, it is suited to an array that can be tightly arranged. Figure 8.99 depicts an example of such an array, which is a 4 × 4 array, constructed in the size of 1.2λ0 × 1.2λ0, with separation of each element λ0/15 at the center frequency f0 = 2.55 GHz. The directivity is 13 dB and the bandwidth is 2%.
A DBE antenna with reduced size and yet wide bandwidth is designed. The antenna depicted in Figure 8.100(a) has reduced footprint of 0.85 × 0.88 (in inches) (λ0/9.6 × λ0/9.3 × λ0/16 at 1.45 GHz) etched on 2 × 2 inches alumina substrate (εr = 9.6, tan δ = 3 × 10−4) with thickness of 500 mils, having a metal plate as the ground plane on the back surface. On the alumina substrate, the resonance frequency is down to 1.455 GHz