Добавил:
linker.pp.ua Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Антенны, СВЧ / OC / fujimoto_kyohei_morishita_hisashi_modern_small_antennas.pdf
Скачиваний:
114
Добавлен:
15.12.2018
Размер:
9.36 Mб
Скачать

References 257

Return loss (dB)

0

10

20

 

 

Active antenna (with negative capacitance)

30

Active antenna (with negative inductance)

 

Reference antenna

40 Microstrip line feed RMSA

50

10.683 GHz

7

8

9

10

11

12

Frequency (GHz)

Figure 7.256 Return loss in both passive and active matching ([137], copyright C 2007 IEEE).

7.2.6.4Microstrip antenna

Either negative inductance or negative capacitance is applied to a rectangular microstrip antenna to enhance the bandwidth [137]. The patch dimensions are W (width) = 16 mm, L (length) = 9 mm and the ground plane size is a 50 mm square. The operating frequency is 10.55 GHz with |S11|= 21.5 dB at the resonance frequency.

A floating negative inductance is realized by using two FETs inserted between the antenna and the source (transmitter). The bandwidth is increased from 12.2% in passive matching case to 24.5% in the active matching case.

In case of connecting a negative capacitance circuit to the output of the antenna, the bandwidth can be enhanced from 12.2% to 16.96%. The gain is increased from 6.6 dB to 9.2 dB. The reference antenna is illustrated in Figure 7.255, which shows that a matching stub is connected to the feed line. The return loss |S11|of both active and passive matching cases are shown in Figure 7.256.

References

[1]H. Nakano, H. Tagami, A. Yoshizawa, and J. Yamauchi, Shortening Ratios of Modified Dipole Antennas, IEEE Transactions on Antennas and Propagation, vol. 32, 1984, no. 4, pp. 385–386.

[2]L. C. Godara (ed.), Handbook of Antennas In Wireless Communications, CRC Press 2000, chapter 12.2.2.2, pp. 12–13–12–18.

[3]K. Noguchi, et al., Impedance Characteristics of a Small Meander Line Antenna, Transactions of IEICE vol. JB, BII, no. 2, 1998, pp. 183–184.

[4]L. C. Godara (ed.), Handbook of Antennas In Wireless Communications, CRC Press 2000, Chapter 12.2.2, pp. 12–11–12–19.

[5]F. Kuroki and H. Ohta, Miniaturized Cross Meander-Line Antenna Etched on Both Sides of Dielectric Substrate, International Symposium on Antennas and Propagation (ISAP)

2006, Singapore a258 r266.

258Design and practice of small antennas I

[6]H. Choo and H. Ling, Design of Planar, Electrically Small Antennas with Inductively Coupled Feed Using a Genetic Algorithm, IEEE International Symposium on Antennas and Propagation 2003, 22.1.

[7]C. W. P. Huang et al., FDTD Characterization on Meander Line Antennas for RF and Wireless Communications, Progress in Electromagnetics Research PIER, 24, 1991, pp. 185– 199.

[8]C-I. Lin, F-W. Chi, and K-L. Wang, Internal Meander Line Antenna for GSM/DCS/PCS Multiband Operation in Mobile Phones, International Symposium on Antennas and Prop-

agation (ISAP), 2006, Singapore a62 r93.

[9a] L. C. Godara (ed.), Handbook of Antennas In Wireless Communications, CRC Press 2000, chs. 12.2.3–12.2.5, pp. 12–27–12–34.

[9b] L. C. Godara (ed.), Handbook of Antennas In Wireless Communications, CRC Press 2000, chs. 12.2.6 and 12.2.7, pp. 12–34–12–39.

[10]K. Noguchi et al., Increasing the Bandwidth of Meander Line Antennas Consisting of Two Strips, Transactions of IEICE, vol. JB2-B, 1999, no. 3, pp. 402–409.

[11]C. A. Balanis, Antenna Theory, Analysis and Design, 2nd edn., 1982, pp. 459–461.

[12]K. Noguchi, et al., Impedance Characteristics of a Meander Line Antenna Mounted on a Conducting Plane, IEICE National Convention, B-1–106, 1999, p. 106.

[13]M. Takiguchi and Y. Yamada, Radiation and Ohmic Resistances in Very Small Meander Line Antennas of Less than 0.1 Wavelength, Transactions of IEICE, vol. J87-B, 2004, no. 9, pp. 1336–1346.

[14]Y. Yamada and N. Michishita, Efficiency Improvement of a Miniaturized Meander Line Antenna by Loading a High εr Material, IEEE iWAT, 2005.

[15]R. L. Bell, C. T. Elfving, and R. E. Franks, Near Field Measurement on a Logarithmically Periodic Antenna, IRE Transactions on Antennas and Propagation, vol. 8, 1960, pp. 559– 567.

[16]P. E. Mayes, Balanced Backfire Zigzag Antennas, 1964 IEEE International Conference Record pt. 1, pp. 158–165.

[17]S. H. Lee, Theory of Zigzag Antennas, Ph.D. Dissertation, Dept. of Electrical Engineering University of California, Berkeley, June, 1968, pp. 20, 31–33.

[18]S. H. Lee and K. K. Mei, Analysis of Zigzag Antennas, IEEE Transactions on Antennas and Propagation, vol. 18, 1970, no. 6, pp. 760–764.

[19]N. Inagaki, K. Tamura, and K. Fujimoto, Theoretical Investigation on the Resonance Length of Normal Mode Helical Antennas, Technical Report of Nagoya Institute of Technology, vol. 23, 1971, pp. 335–341.

[20]K. Fujimoto et al., Small Antennas, Research Studies Press, 1987, pp. 59–75.

[21]N. Inagaki, T. Marui, and K. Fujii, Newly Devised MoM Analysis and Design Data for NMHA, Technical Report of IEICE, AP2007–194(2008–03) pp. 123–128.

[22]T. Endo, Y. Sunahara, and Y. Hoshihara, Resonance Frequency of Dielectric Loaded Normal Mode Helical Antenna, IEICE Technical Report, vol. 95, 1995, no. 535, pp. 1–6.

[23]J. S. Carreno and J. S. Solis, Broadband Log-periodic Normal Mode Helical Antennas,

IEEE APS International Symposium, vol. 1, 2003, pp. 249–252.

[24]Y. Ogura, K. Asakawa, and T. Maeda, Folded Normal Mode Helical Antennas, IEICE Technical Report, vol. 104, 2004, no. 395.

[25]K. Noguchi et al., Impedance Characteristics of Two-wire Helical Antenna in Normal Mode, Electronics and Communications in Japan, vol. 81, 1998, no. 12, pp. 37–44.

References 259

[26]S. R. Best, A Discussion on the Properties of Electrically Small Self-Resonant Wire Antennas, IEEE Antennas and Propagation Magazine, vol. 46, 2004, no. 6, pp. 9–22.

[27]H. A. Wheeler, Small Antennas, IEEE Transactions on Antennas and Propagation, AP-23, 1975, pp. 462–469.

[28]A. D. Yaghjian and S. R. Best, Impedance Bandwidth and Q of Antennas, IEEE International Symposium on Antennas and Propagation, Digest, vol. I, 2003, pp. 501–504.

[29]K-L. Wong, Compact and Broadband Microstrip Antennas, John Wiley and Sons, 2002, p. 5.

[30]H. A. Wheeler, Fundamental Limitation of Small Antennas, Proceedings of IRE, vol. 35, Dec 1947, pp. 1479–1484.

[31a] H. A. Wheeler, The Spherical Coil as an Inductor, Shield or Antenna, Proceedings of IRE, vol. 58, September 1958, pp. 1595–1602.

[31b] H. A. Wheeler, The Radian Sphere Around a Small Antenna, Proceedings of IRE, vol. 59, 1959, pp. 1325–1331.

[32]J. S. McLean, A Re-examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas, IEEE Transactions on Antennas and Propagation, AP-44, May 1996, pp. 672–675.

[33]N. Engheta and R. W. Ziolkowsky, Metamaterials-Physics and Engineering Explorations,

John Wiley and Sons, 2006. p. 378.

[34a] C. P. Baliarda, J. Romeu, and A. Cardama, The Koch Monopole: A Small Fractal Antenna,

IEEE Transactions on Antennas and Propagation, vol. 48, 2000, no. 11, pp. 1773– 1781.

[34b] J. P. Gianvittorio and Y. Rahmat-Samii, Fractal Antenna: A Novel Antenna Miniaturization Technique and Applications, IEEE Antennas and Propagation Magazine, vol. 44, 2002, no. 1, pp. 20–36.

[34c] D. H. Werner and S. Ganguly, An Overview of Fractal Antenna Engineering Research, IEEE Antennas and Propagation Magazine, vol. 45, February 2003, no. 1, pp. 39–40.

[35]J. R-Mohassel, A. Mehdipour, and H. Aliakbarian, New Schemes of Size Reduction in Space Filling Resonant Dipole Antennas, 3rd European Conference on Antennas and Propagation, vol. 23–27, 2009, pp. 2430–2432.

[36]H. K. Ryu and J. M. Woo, Miniaturization of Rectangular Loop Antenna using Meander Line for RFID Tags, Electronics Letters, vol. 43, March 2007, pp. 372–374.

[37]H. K. Ryu, S. Lim, and J. M. Woo, Design of Electrically Small, Folded Monopole Antenna using C-shaped Meander for Active 433.92 MHz RFID Tag in Metallic Container Application, Electronics Letters, vol. 44, 2008, pp. 1445–1447.

[38]C. Borja and J. Romeu, On the Behavior of Koch Fractal Boundary Microstrip Patch Antenna, IEEE Transactions on Antennas and Propagation, vol. 51, 2003, no. 6, pp. 281– 291.

[39]S. R. Best, On the Performance of the Koch Fractal and Other Bent Wire Monopole, IEEE Transactions on Antennas and Propagation, vol. 51, 2003, no. 6, pp. 1292–1300.

[40]N. Engheta and R. W. Ziolkowsky, Metamaterials Physics and Engineering Explorations, John Wiley and Sons, 2006, pp. 378–381.

[41]J. Zhu, A. Hoorfar, and N. Engheta, Peano Antennas, Antennas and Wireless Propagation Letters, vol. 3, 2004, pp. 71–74.

[42]X. Chen, S. S-Naemi, and Y. Liu, A Down-Sized Hilbert Antenna for UHF Band, IEEE International Symposium on Antennas and Propagation 2003, pp. 581–584.

260Design and practice of small antennas I

[43]H. Huang and A. Hoorfer, Miniaturization of Dual-Band Planar Inverted-F Antennas using Peano-Curve Elements, International Symposium on Antennas and Propagation (ISAP)

2006, a292 r206.

[44]J. P. Gianvittorio and Y. Rahmat-Samii, Fractal Antenna: A Novel Antenna Miniaturization Technique and Applications, IEEE Antennas and Propagation Magazine, vol. 44, 2002, no. 1, pp. 20–36.

[45]S. R. Best, A Comparison of the Resonant Properties of Small Space-Filling Fractal Antennas, IEEE Antennas and Wireless Propagation Letters, vol. 2, 2003, pp. 197– 200.

[46]W. J. Krzysztofik, Modified Sierpinsky Fractal Monopole for ISM-Bands Handset Applications, IEEE Transactions on Antennas and Propagation, vol. 57, 2009, no. 3,

pp.606–615.

[47]D.H. Werner and S. Ganguly, An Overview of Fractal Antenna Engineering Research,

IEEE Antennas and Propagation Magazine, vol. 45, 2003, no. 1, pp. 38–57.

[48]W. L Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd edn., John Wiley and Sons, pp. 252–258.

[49]M. McFadden and W. R. Scott, Analysis of the Equiangular Spiral Antenna on a Dielectric Substrate, IEEE Transactions on Antennas and Propagation, vol. 55, 2007, no. 11,

pp.3163–3171.

[50]H. Nakano et al., Equiangular Spiral Antenna Backed by a Shallow Cavity With Absorbing Strips, IEEE Transactions on Antennas and Propagation, vol. 56, 2008, no. 8, pp. 2742– 2747.

[51]J. L. Volakis, N. W. Nurnberger, and D. S. Filipovic, A Broadband Cavity-Backed Slot Spiral Antenna, IEEE Antennas and Propagation Magazine, vol. 43, 2001, no. 6, pp. 15– 26.

[52]M. W. Nurnberger and J. L. Volakis, Extremely Broadband Slot Spiral Antennas with Shallow Reflecting Cavities, Electromagnetics, vol. 20, 1996, no. 4, pp. 130–131.

[53]B. A. Kramer et al., Design and Performance of an Ultra Wideband Ceramic-loaded Slot Spiral, IEEE Transactions on Antennas and Propagation, vol. 53, 2005, no. 7, pp. 2193– 2199.

[54]D. S. Filipovic and J. L. Volakis, Broadband Meanderline Slot Spiral Antenna, IEE Proceedings-Microwaves Antennas and Propagation, vol. 149, 2002, no. 2, pp. 98–105.

[55]M. Nurnberger and J. L. Volakis, New Termination for Ultra Wide-band Slot Spirals, IEEE Transactions on Antennas and Propagation, vol. 50, 2002, no. 1, pp. 82–85.

[56]D. S. Filipovic and J. L. Volakis, Novel Slot Spiral Antenna Design for Dualband/ Multi-band Operation, IEEE Transactions on Antennas and Propagation, vol. 51, 2003, no. 3, pp. 430–440.

[57]D. S. Filipovic and J. L. Volakis, A Flush Mounted Multifunctional Slot Aperture (Comboantenna) for Automotive Applications, IEEE Transactions on Antennas and Propagation vol. 52, 2004, no. 2, pp. 563–571.

[58]B. A. Kramer et al., Miniature Conformal Aperture with Volumetric Inductive Loading, IEEE APS International Symposium, 2006, Digest vol. 44, pp. 3693–3696.

[59]B. A. Kramer et al., Miniature UWB Antenna with Enhanced Inductive Loading, Small Antennas Novel Metamaterials, IEEE iWAT 2006 International Workshop, pp. 289–292.

[60]C. C. Chen and J. L. Volakis, Spiral Antennas: Overview, Properties and Miniaturization Techniques, in R. Waterhouse, (ed.), Printed Antennas for Wireless Communications, John Wiley and Sons, 2007.

References 261

[61]M. Lee et al., Distributed Lumped Loads and Lossy Transmission Line Model for Wideband Spiral Antenna Miniaturization and Characterization, IEEE Transactions on Antennas and Propagation vol. 55, 2007, no. 10, pp. 2671–2678.

[62]B. A. Kramer et al., Size Reduction and a Low-profile Spiral Antenna using Inductive and Dielectric Loading, IEEE Antennas and Wireless Propagation Letters, vol. 7, 2008, pp. 22–25.

[63]J. L. Volakis, C. C. Chen, and K. Fujimoto, Small Antennas-Miniaturization Techniques and Applications, McGraw-Hill, 2010.

[64]R. W. Klopfenstein, A Transmission Line Taper of Improved Design, Proceedings of IRE, vol. 44, 1956, no. 1, pp. 31–35.

[65]J. Abadia et al., 3D-Spiral Small Antenna Design and Realization for Biomedical Telemetry in the MICS band, Radioengineering, Proceedings of Czech and Slovak Technical

Universities and URSI Committees, vol. 18, 2009, no. 4, pp. 359–366.

[66] Victrex R PEEK polymers, available at; www.victrex.com/en/products/victrex- peek-polymers/victrex-peek-polymers.php.

[67]J. H. Wheeler, Fundamental Limitations of Small Antennas, Proceedings of IRE, vol. 35, December 1947, pp. 1479–1484.

[68]J. C. Cardoso and A. Safaal-Jazi, Spherical Helical Antenna with Circular Polarization over a Broad Beam, Electronics Letters, vol. 29, 1993, no. 4, pp. 325–326.

[69]A. Safaal-Jazi and J. C. Cardoso, Radiation Characteristics of a Spherical Helix Antenna,

Proceedings of Institution of Electrical Engineers Microwave Antennas Propagation, vol. 143, 1996, no. 1, pp. 7–12.

[70]H. T. Hui et al., The Input Impedance and the Antenna Gain of the Spherical Helix Antenna,

IEEE Transactions on Antennas and Propagation, vol. 49, 2001, pp. 1235–1237.

[71]S. R. Best, The Radiation Properties of Electrically Small Folded Spherical Helix Antennas, IEEE Transactions on Antennas and Propagation vol. 52, 2004, no. 4, pp. 953–960.

[72]S. R. Best, Low Q Electrically Small Linear and Elliptical Polarized Spherical Dipole Antennas, IEEE Transactions on Antennas and Propagation, vol. 53, 2003, no. 3, pp. 1047– 1053.

[73]S. R. Best, A Comparison of the Cylindrical Folded Helix Q to the Gustafsson Limit, EuCap 2009, Berlin, pp. 2554–2557.

[74]S. R. Best, The Quality Factor of the Folded Cylindrical Helix, Radio Engineering, Proceedings of Czech and Slovak Technical Universities and URSI Committee, vol. 18, 2009, no. 4, pp. 343–347.

[75]A. Mehdipour, H. Aliakbarian, and J. Rashed-Mohassel, A Novel Electrically Small Spherical Wire Antenna With Almost Isotropic Radiation Pattern, IEEE Antennas and Wireless Propagation Letters, vol. 7, 2009, pp. 396–399.

[76]S. R. Best, A Low Q Electrically Small Magnetic (TE Mode) Dipole, IEEE Antennas and Wireless Propagation Letters, vol. 8, 2009, pp. 572–575.

[77]H. L. Thal, New Radiation Q Limits for Spherical Wire Antennas, IEEE Transactions on Antennas and Propagation, vol. 54, 2006, no. 10, pp. 2757–2763.

[78]O. S. Kim, Low-Q Electrically Small Spherical Magnetic Dipole Antennas, IEEE Transactions on Antennas and Propagation, vol. 58, 2010, no. 7, pp. 2210–2217.

[79]H. A. W. Alsawara and A. Safaai-Jazi, Ultrawideband Hemispherical Helical Antenna,

IEEE Transactions on Antennas and Propagation, vol. 58, 2010, no. 10, pp. 3175–3181.

[80]J. Ramsay, Highlights of Antenna History, IEEE Antennas and Propagation Society Newsletter, December 1981, p. 8.

262Design and practice of small antennas I

[81]C. W. Harrison, Monopole with Inductive Loading, IEEE Transactions on Antennas and Propagation, AP-11, 1963, pp. 394–400.

[82]T. L. Simpson, The Disk Loaded Monopole Antenna, IEEE Transactions on Antennas and Propagation vol. 52, 2008, no. 2, pp. 542–550.

[83a] S. R. Best and D. L. Hanna, A Performance Comparison of Fundamental Small-Antenna Designs, IEEE Antennas and Propagation Magazine, vol. 52, 2010, no. 1, pp. 47–70.

[83b] S. R. Best, Small and Fractal Antennas, in C. A. Balanis (ed.), Modern Antenna Handbook, John Wiley and Sons, 2008, 10.6.3.

[84]Z. Xing and X. Yadong, A Novel Electrically Small Monopole Load by Open-Circuited Transmission Line, IEEE APS International Symposium vol. 44, 2006, pp. 615–618.

[85]L. J-Ying and G. Y-Beng, Characteristics of Broadband Top-Loaded Open-Sleeve Monopole, IEEE APS International Symposium 2006, 157.7, pp. 635–638.

[86]K. Surabandi and R. Azadegan, Design of an Efficient Miniaturized UHF Planar Antenna,

IEEE Transactions on Antennas and Propagation, vol. 51, 2003, no. 6, pp. 1270–1276.

[87]N. Begdad and K. Sarabandi, Bandwidth Enhancement and Further Size Reduction of a Class of Miniaturized Slot Antennas, IEEE Transactions on Antennas and Propagation, vol. 52, 2004, no. 8, pp. 1928–1934.

[88]P. Xu, K. Fujimoto, and L. Shiming, Performance of Quasi-self-complementary Antenna,

IEEE Antennas and Propagation Society International Symposium, vol. 40, 2002, pp. 464– 467.

[89]Y. Mushiake, Self-Complementary Antennas, Springer, 1996, pp. 40–42.

[90]Xu Pu and K. Fujimoto, L-shaped Self-complementary Antenna, IEEE APS International Symposium, vol. 3, 2003, pp. 95–98.

[91]R. Azadegan and K. Sarabandi, Bandwidth Enhancement of Miniaturized Slot Antennas Using Folded, Complementary, and Self-Complementary Realization, IEEE Transactions on Antennas and Propagation, vol. 55, 2007, no. 9, pp. 2435–2444.

[92]L. Guo, S. Wang, X. Chen, and C. Oarini, A Small Printed Quasi-Self-Complementary Antenna for Ultrawideband Systems, IEEE Antennas and Wireless Propagation Letters, vol. 8, 2009, pp. 554–557.

[93]M. C. Buck and D. S. Filipovic, Two-Arm Sinuous Antennas, IEEE Transactions on Antennas and Propagation, vol. 56, 2008, no. 5, pp. 1229–1235.

[94]K. G. Schroeder and K. M. S. Hoo, Electrically Small Complementary Pair (ESCP) with Interelement Coupling, IEEE Transactions on Antennas and Propagation, AP-24, 1976, no. 4, pp. 411–418.

[95]D-H. Kwon et al., Small Printed Combined Electric-Magnetic Type Ultrawideband Antenna With Directive Radiation Characteristics, IEEE Transactions on Antennas and Propagation, vol. 56, 2008, no. 1, pp. 237–241.

[96]M. A. P. Lazzaro and R. Judaschke, A 150-GHz CPW-fed tapered-slot antenna, IEEE Microwave Wireless Components Letters, vol. 14, 2004, no. 2, pp. 62–64.

[97]X.-C. Lin and C.-C. Yu, A Dual-band Slot-Monopole Hybrid Antenna, IEEE Transactions on Antenna and Propagation, vol. 56, 2008, no. 1, pp. 282–285.

[98]W. S. C. Lin and W. R. Chen, CPW-fed Compact Meandered Patch Antenna for Dual-band Operation, Electronics Letters, vol. 40, 2004, no. 18, pp. 1094–1095.

[99]W. S. Chen and K. L. Wong, A Coplanar Waveguide-fed Printed Slot Antenna for Dualfrequency Operation, IEEE Antennas and Propagation Society International Symposium, vol. 2, 2001, pp. 140–143.

References 263

[100] W. Hong and K. Sarabandi, Low Profile Miniaturized Planar Antenna With Omnidirectional Vertically Polarized Radiation, IEEE Transactions on Antennas and Propagation, vol. 24, 1976, no. 4, pp. 411–418.

[101a] J. B. Pendry et al., Low Frequency Plasmons in Thin-wire Structures, Journal of Physics: Condensed Matter, vol. 10, 1998, pp. 4785–4809.

[101b] S. Tretyakov, Analytical Modeling in Applied Electromagnetics, Artech House, 2003. [101c] N. Engheta and R. W. Ziolkowsky, Metamaterials: Physics and Engineering Explorations,

Wiley-IEEE Press, 2006, pp. 88–90.

[101d] W. Rotman, Plasma simulation by artificial and parallel-plate media, IEEE Transactions on Antennas and Propagation, vol. 10, 1962, no. 1, pp. 82–95.

[102a] J. B. Pendry et al., Magnetism from Conductors and Enhanced Nonlinear Phenomena,

IEEE Transactions on Microwave Theory and Techniques, vol. 47, 1999, no. 11, pp. 2075– 2084.

[102b] D. R. Smith et al., A Composite Medium with Simultaneously Negative Permeability and Permittivity, Physical Review Letters, vol. 84, 2000, no. 18, pp. 4184–4187.

[103a] C. Caloz and T. Itoh, Applications of the Transmission line Theory to Left-handed (LH) Materials, USNC/URSI, San Antonio, 2002.

[103b] A. Lai, C. Caloz, and T. Itoh, Composite Right/Left-Handed Transmission Line Metamaterials, IEEE Microwave Magazine, September 2004, pp. 34–50.

[103c] A. K. Iyer and G. V. Eleftheriades, Negative Refractive Index Metamaterials Supporting 2D Waves, Proceedings of IEEE International Microwave Theory and Techniques

Symposium, Seattle, 2002.

[104]C. Caloz and T. Itoh, Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, 2005.

[105]G. V. Eleftheriades and K. G. Balmain (eds.), Negative Refraction Metamaterials: Fundamental Principles and Applications, Wiley-IEEE Press, 2005.

[106]D. Guha and Y. M. M. Antar (eds.), Microstrip and Printed Antennas, John Wiley and Sons, 2011, chapter 11.

[107]D. Guha and Y. M. M. Antar, Microstrip and Printed Antennas, John Wiley and Sons, 2011, p. 365.

[108]T. Tsutaoka, et al., Negative Permeability Spectra of Magnetic Materials, IEEE iWAT 2008, P202, pp. 279–281.

[109]A. Erentok and R. W. Ziolkowsky, Metamaterial-Inspired Efficient Electrically Small Antennas, IEEE Transactions on Antennas and Propagation, vol. 56, 2008, no. 3, pp. 691– 707.

[110]J. D. Baena, R. Marques, and F. Medina, Artificial Magnetic Metamaterial Design Using Spiral Resonators, Physical Review B, vol. 69, 2004, 014402.

[111]C. R. Simovski and S. He, Frequency Range and Explicit Expressions for Negative Permit-

tivity and Permeability for Isotropic Medium Formed by a Lattice of Perfectly Conductingparticles, Physics Letters A, vol. 311, 2003, p. 254.

[112a] F. Bilotti, A. Alu, and L. Vegni, Design of Miniaturized Metamaterial Patch Antennas with µ–Negative Loading, IEEE Transactions on Antennas and Propagation, vol. 56, 2008, no. 6, pp. 1640–1647.

[112b] A. Alu et al., Subwavelength, Compact, Resonant Patch Antennas Loaded with Metamaterials, IEEE Transactions on Antennas and Propagation, vol. 55, 2007, no. 1, pp. 13–25.

264Design and practice of small antennas I

[113]P. Y. Chen and A. Alu, Sub-Wavelength Elliptical Patch Antenna Loaded with µ–Negative Metamaterials, IEEE Transactions on Antennas and Propagation, vol. 58, 2010, no. 9, pp. 2909–2919.

[114]H. R. Stuart and A. Pidwerbetsky, Electrically Small Antenna Elements Using Negative Permittivity Resonators, IEEE Transactions on Antennas and Propagation, vol. 54, 2006, no. 6, pp. 1644–1653.

[115]J. Zhu and G. V. Eleftheriades, A Compact Transmission-Line Metamaterial Antenna With Extended Bandwidth, IEEE Antennas and Wireless Propagation Letters, vol. 8, 2009, pp. 295–298.

[116]C. Caloz, T. Itoh, and A. Rennings, CRLH Metamaterial Leaky-Wave and Resonant Antennas, IEEE Antennas and Propagation Magazine, vol. 50, 2008, no. 5, pp. 26–39.

[117]C. A. Allen, K. M. K. H. Leong, and T. Itoh, 2-D Frequency Controlled Beam-scanning by a Leaky Guided Wave Transmission Line Array, IEEE International Symposium on Microwave Theory and Techniques Digest, 2006, pp. 457–460.

[118]T. Kaneda, A. Sanada, and N. Kubo, 2-D Beam Scanning Plane Antenna Array Using Composite Right/Left-Handed Leaky Wave Antennas, IEICE Transactions on Electronics, vol. 89, 2006, no. 12, pp. 1904–1911.

[119]F. P. Casares-Miranda, C. Camacho-Ponalosa, and C. Caloz, High-Gain Active Composite Right/Left-Handed Leaky Wave Antennas, IEEE Transactions on Antennas and Propagation AP-54, 2006, no. 8, pp. 2292–2300.

[120]F. Qureshi, M. A. Antoniades, and G. V. Eleftheriades, A Compact and Low-Profile Metamaterial Ring Antenna with Vertical Polarization, IEEE Antennas and Wireless Propagation Letters, vol. 4, 2005, pp. 333–336.

[121]M. A. Antoniades and G. V. Eleftheriades, A Folded-Monopole Model for Electrically Small NRI-TL Metamaterial Antennas, IEEE Antennas and Wireless Propagation Letters, vol. 7, 2008, pp. 425–428.

[122]M. Antoniades and G. V. Eleftheriades, A Broadband Dual-Mode Monopole Antenna Using NRI-TL Metamaterial Loading, IEEE Antennas and Wireless Propagation Letters, vol. 8, 2009, pp. 258–261.

[123]J. Zhu, M. A. Antoniades, and G. V. Eleftheriades, A Compact Tri-band Monopole Antenna With Single-Cell Metamaterial Loading, IEEE Transactions on Antennas and Propagation, vol. 58, 2010, no. 4, pp. 1031–1038.

[124]P. J. Herritz-Martinez et al., Multifrequency and Dual-Mode Patch Antennas Filled With Left-Handed Structures, IEEE Transactions on Antennas and Propagation, vol. 56, 2008, no. 8, pp. 2527–2539.

[125]Y.-S. Wang, M.-F. Hsu, and S.-J. Chung, A Compact Slot Antenna Utilizing a Right/LeftHanded Transmission Line Feed, IEEE Transactions on Antennas and Propagation, vol. 56, 2008, no. 3, pp. 675–682.

[126]T. K. Albee, Broadband VLF Loop Antenna System, US Patent no. 3953799, April 27, 1976.

[127]S. Koley and J. L. Gautier, Using a Negative Capacitance to Increase the Tuning Range of a Varactor Diode in MMIC Technology, IEEE Transactions on Microwave Theory and Techniques, vol. 49, 2001, pp. 2425–2430.

[128]A. Kaya, et al., Bandwidth Enhancement of a Microstrip Antenna Using Negative Inductance as Impedance Matching Device, Microwave and Optical Technology Letters, vol. 421, 2004, pp. 476–478.

References 265

[129]J. G. Linvill, Transistor Negative Impedance Converter, Proceedings of IRE, vol. 41, 1953, pp. 725–729.

[130]T. Yanagisawa, RC Active Networks Using Current Inversion Type Negative Impedance Converters, IRE Transactions on Circuit Theory, vol. 4, 1957, pp. 140–144.

[131]H. Yogo and K. Kato, Cirucuit Realization of Negative Impedance Converter at VHF, Electronics Letters, vol. 10, 1974, no. 9, pp. 155–156.

[132]S. E. Sussman-Fort and R. M. Rudish, Non-Foster Impedance Matching for Transmit Applications, IEEE iWAT, 2006, pp. 53–56.

[133]S. E. Sussman-Fort, Matching Network Design Using Non-Foster Impedances, International Journal of RF and Microwave Computer-Aided Engineering, 2006, no. 16, pp. 135– 142.

[134]J. T. Aberle, Two-Port Representation of an Antenna With Application to Non-Foster Matching Networks, IEEE Transactions on Antennas and Propagation, vol. 56, 2008, no. 5, pp. 1218–1222.

[135]K.-S. Song and R. G. Rojas, Electrically Small Wire Monopole Antenna with Non-Foster Impedance Element, EuCAP 2010, A02-1.

[136]S. Koulouridis and J. L. Volakis, Non-Foster Circuits for Small Broadband Antennas,

IEEE APS International Symposium 2009, digest, pp. 1973–1976.

[137]A. Kaya and E.Y. Yukel, Investigation of Compensated Rectangular Microstrip Antenna With Negative Capacitor and Negative Inductor for Bandwidth Enhancement, IEEE Transactions on Antennas and Propagation, vol. 55, 2007, pp. 1275–1282.

Соседние файлы в папке OC