Добавил:
linker.pp.ua Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Антенны, СВЧ / OC / fujimoto_kyohei_morishita_hisashi_modern_small_antennas.pdf
Скачиваний:
114
Добавлен:
15.12.2018
Размер:
9.36 Mб
Скачать

164Design and practice of small antennas I

wavelength. Equation (7.65) indicates that the spiral radiates with a constant gain of π in free space. However, all three gains have a periodic ripple with period of approximately 2.2 GHz, which is the inverse of time delay td = 0.45 ns that is caused in the radiated field by the wave travelling on the spiral surface. This arises because of the truncation of the spiral, which is 12 cm from the feed. The time delay which causes ripple tends to be approximately R/c, where R is the radius of the spiral and c is velocity of light in free space.

7.2.2.1.4.4 Radiation patterns

Radiation patterns of the spiral antenna shown in Figure 7.114 (εr = 4.2) are illustrated in Figure 7.120 [49], where only upper hemisphere patterns are given, as the lower hemisphere patterns are the same. The patterns are seen to have alternative contraction and expansion along the z-axis that corresponds to the maxima of the gain ripple. In the dielectric case, it becomes further complicated as the frequency becomes higher, because of deflection of radiated power into side lobes.

7.2.2.1.4.5 Unidirectional pattern

In many practical spiral antenna applications, a unidirectional pattern is required. For this purpose, a conducting shallow cavity is placed behind a spiral antenna. However, since simple use of such a cavity deteriorates the inherent wideband property of the spiral antenna, an absorber may be applied to the outer spiral arms to restore the wideband property [50]. The absorber will suppress reflection of waves caused by the truncation of outer spiral arms. Figure 7.121 illustrates an example of an equiangular spiral antenna, to which a ring-shaped absorber (R-ABS) is applied. In the figure, (a) shows an exploded view, (b) the side view, (c) spiral arms, and (d) a magnified view of near the input terminals. Figure 7.122 illustrates the input impedance; (a) Rin (resistance), (b) Xin (reactance) with and without cavity, (c) with R-ABS. The antenna used here is a two-arm equiangular spiral antenna having parameters provided in Table 7.14, which is backed by a conducting cavity of height Hcav (= antenna height), and diameter Dcav. Axial ratios with and without R-ABS are shown in Figure 7.123. As these figures show, fairly wideband characteristics can be seen with use of R-ABS.

The absorber size can be reduced only to cover near the edge of the outer spiral arms so that no or almost no reflection appears at the ends of the outer spiral arms. Figure 7.124 illustrates an example of the use of arc-shaped ABS (A-ABS) [50]. Input impedance Zin (= Rin + jXin) and axial ratio for a case with A-ABS are shown in Figure 7.125(a) and (b), respectively, and radiation patterns are depicted in Figure 7.126, in which (a) and

(b) show with A-ABS, but for the case where ϕarc = 90and 180, respectively, and (c) shows without A-ABS (ϕarc = 0).

7.2.2.1.4.6 Miniaturization of spiral antenna

Spiral antennas can be miniaturized by lowering phase velocity of the waves travelling on the spiral arms from the feed point. However, since a spiral antenna has an inherently wide bandwidth property, the phase velocity at a single resonance frequency cannot be taken

7.2 Design and practice of ESA

165

 

 

εr = 1

εr= 4.2

1.78 GHz

2.88 GHz

3.98 GHz

5.18 GHz

6.28 GHz

7.50 GHz

Figure 7.120 Radiation patterns of antenna shown in Figure 7.114 on the upper hemisphere for cases εr = 1 and 4.2 ([49], copyright C 2007 IEEE).

166

Design and practice of small antennas I

 

 

 

 

Z

 

 

 

 

 

 

 

 

B

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ring-shaped

 

 

 

 

 

 

 

 

 

ABS

 

 

 

Z

Spiral

 

 

 

 

(R-ABS)

 

 

 

~O

 

 

 

 

 

X

R-ABS

 

R-ABS Hcav

 

 

O

 

 

Cavity

 

O

 

 

 

 

t

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

Hcav

 

 

y

 

 

 

Dcav

 

 

(a)

 

 

 

 

 

(b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

y

 

 

qB

pB

 

 

 

ϕend

 

 

 

 

 

 

 

qB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pA

rmax

 

 

a

τ B

x

 

 

A

 

A

 

 

 

 

B

x

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

ϕst

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

qA

pB

 

pA

 

qA

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

 

 

(d)

 

Figure 7.121 Equiangular spiral antenna with a ring-shaped absorber: (a) exploded view, (b) side view, (c) spiral element, and (d) magnified view around the input terminals ([50], copyrightC 2008 IEEE).

(a)

 

600

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with a cavity

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

without a cavity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

5

6

7

8

9

10

 

 

 

 

 

 

 

 

 

 

 

Frequency (GHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)

600

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

(b) 600

with a cavity

400

without a cavity

)

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in

0

 

 

 

 

 

 

 

 

X

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

2

3

4

5

6

7

8

9

10

 

 

 

 

Frequency (GHz)

 

 

 

 

 

 

with R-ABS

 

 

 

 

 

 

 

without R-ABS (See)

 

 

 

 

 

 

“with a cavity” in (a) and (b)

 

 

 

 

 

Rin

 

 

 

 

 

 

 

 

 

Xin

 

 

 

 

 

 

 

 

5

6

7

8

9

10

 

 

 

 

Figure 7.122 Input impedance of equiangular spiral antenna; (a) Rin resistance (b) reactance (dotted line, with cavity and solid line, without cavity), and (c) Rin and Xin with A-ABS ([50], copyright C 2008 IEEE).

7.2 Design and practice of ESA

167

 

 

Table 7.14 Geometrical parameters ([50], copyright C 2008 IEEE)

symbol

value

unit

 

 

 

r0

1.5

mm

as

0.35

rad1

ϕst

0.25π

mm

ϕend

2.806π

rad

τ

0.5π

rad

Dcav

120

mm

Hcav

7

mm

AR (dB)

20

 

18

with R-ABS

 

16

without R-ABS

14

 

12

 

10

 

8

 

6

 

4

 

2

 

0

2

3

4

5

6

7

8

9

10

Frequency (GHz)

Figure 7.123 Axial ratio with and without R-ABS ([50], copyright C 2008 IEEE).

 

 

 

Z

 

 

 

qA

A

pA

(a)

pB B

 

 

 

qA

qB

arc-shaped

 

 

ϕARC

(b)

 

t

 

ABS

ϕ

qB

(ϕ-ABS)

 

 

ARC

 

 

O

(c)

O

x

y

Hcav

Figure 7.124 Equiangular spiral antenna with arc-shaped absorber: (a) spiral element, (b) arc-shaped ABS, and (c) cavity ([50], copyright C 2008 IEEE).

168

Design and practice of small antennas I

 

 

(a)

600

 

 

 

 

 

A-ABSs

theo.

 

 

400

 

 

 

 

 

 

 

 

 

 

 

(ϕARC = 90°){exp

 

Ω)

 

 

 

 

Rin

 

200

 

 

 

 

 

 

 

(

 

 

 

 

 

 

 

 

 

in

 

 

 

 

 

 

 

 

 

Z

0

 

 

 

Xin

 

 

 

 

 

 

 

 

 

 

 

 

 

–200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–400 2

3

4

5

6

7

8

9

10

Frequency (GHz)

(b)

10

 

 

 

 

A-ABSs

theo.

 

 

8

 

 

 

 

 

(dB)

6

 

 

 

 

(ϕARC = 90°){exp

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

AR

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

3

4

5

6

7

8

9

10

 

2

Frequency (GHz)

Figure 7.125 (a) Input impedance Zin = (Rin + jXin) and (b) axial ratio with A-ABS ([50], copyright C 2008 IEEE).

z

 

with A-ABSs

 

with A-ABSs

 

θ

ϕARC = 90°

z

θ

ϕARC = 180°

 

 

 

 

0

 

 

 

0

 

(R-ABS)

 

10

 

 

 

10

 

 

ER theory

20

 

 

 

20

 

 

 

 

 

 

 

ER expt

30

 

x

 

30

 

x

[dB]

 

 

 

[dB]

 

 

 

(a)

 

 

 

(b)

 

 

 

 

 

z

θ

without A-ABSs

 

 

 

 

 

 

0

 

 

ϕARC =

 

 

 

 

10

 

 

 

 

 

 

 

20

 

 

 

 

ER

 

 

30

 

 

x

 

EL

 

[dB]

 

 

 

 

 

 

(c)

Figure 7.126 Radiation patterns; (a) arc = 90, (b) arc = 180, and arc = 0([50], copyrightC 2008 IEEE).

Соседние файлы в папке OC