Добавил:
linker.pp.ua Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Антенны, СВЧ / OC / fujimoto_kyohei_morishita_hisashi_modern_small_antennas.pdf
Скачиваний:
114
Добавлен:
15.12.2018
Размер:
9.36 Mб
Скачать

112

Design and practice of small antennas I

 

 

η (dB)

N = 10

38

 

 

0

 

 

 

 

 

 

 

–4

22

 

 

 

10

 

 

 

–8

 

 

 

 

22

 

Folded type

 

–12

38

 

 

 

Dipole type

 

 

 

 

 

–16

 

0.1

0.15

0.2

0.05

 

Antenna length (L/λ)

Figure 7.34 Radiation efficiency of a folded MLA ([14], (copyright C 2005 IEEE).

Lf = 10 mm

W = 35 mm

W = 35 mm

d = 1.7 mm

s = 1.4 mm

L = 43 mm

Figure 7.35 A trial model of 0.1λ folded MLA ([13], copyright C 2004 IEICE).

W = 35 mm (0.08λ), Lf = 10 mm (0.02λ), d = 1.7 mm (4.0 × 103 λ), s = 1.4 mm (3.3 × 103 λ), and the thickness of the element made with thin copper plate t = 0.1 mm (2.3 × 104 λ) (Figure 7.35). Measured impedance characteristics of both dipole and folded types are shown in Figure 7.36. The folded type is shown to have higher impedance than that of the dipole type as was mentioned before. Radiation patterns of both dipole and folded types are given in Figure 7.37. Gain is evaluated as –5.99 dBd for the dipole type and –2.28 dBd for the folded type, respectively. The gain obtained by using the IE3D simulator was –5.2 dBd for the dipole type and –1.5 dBd for the folded type, showing higher gain of about 3.7 dB in the folded type [13].

7.2.1.1.1.1.6 MLAs of length L = 0.05 λ [13, 14]

Smaller antennas with length 0.05λ were studied and shown to be practically useful, with appreciably high gain of –12 dBd for the dipole type and –10 dBd for the folded type, respectively, even in this small size [14]. A type of MLA, which is sandwiched by two planar dielectric substrates of high dielectric constant εr (Figure 7.38), was developed, and the antenna performances were studied. Figure 7.39 provides dimensional

7.2 Design and practice of ESA

113

 

 

 

 

1.0j

Folded type

0.5j

2.0j

 

 

 

Dipole type

5.0j

 

740 MHz 750 MHz

 

02

0.2j

710 MHz 720 MHz

 

5.0j

0.5j

2.0j

Figure 7.36 Measured impedances of 0.1λ dipole-type and folded-type MLAs ([13], copyrightC 2004 IEICE).

[dBd]

0

 

Folded type

10

Dipole type

20

 

Figure 7.37 Radiation patterns of 0.1λ dipole-type and folded-type MLAs ([13], copyright C 2004 IEICE).

Substrate

h εr

h

 

 

εr

 

 

 

 

Meander line antenna

Figure 7.38 A trial 0.05λ MLA model sandwiched by two high-εr dielectric plates ([14], (copyright C 2005 IEEE).

114

Design and practice of small antennas I

 

 

(a)

 

 

 

 

 

 

εr = 1

 

 

 

 

d = 0.1 mm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N = 38

 

 

 

 

 

 

 

 

 

 

W = 0.04λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L = 0.05λ

 

Freq. = 708.7 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rin [Ω]

 

Rr [Ω]

 

Rl [Ω]

 

η [dB]

Gain [dBi]

26.93

 

1.498

 

 

25.432

12.5472

12.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)εr = 10

d = 0.6 mm h = 1.0 mm

N = 14

W = 0.04λ

L = 0.05λ

Freq. = 704.8 MHz

Rin [Ω]

Rr [Ω]

Rl [Ω]

η [dB]

Gain [dBi]

5.809

2.035

3.774

4.55537

8.72166

N = 38

W = 0.04λ

 

 

L = 0.05λ

Freq. = 709.05 MHz

 

 

 

 

 

Rin [Ω]

Rr [Ω]

Rl [Ω]

η [dB]

Gain [dBi]

63.83

7.166

56.664

9.49748

8.81569

N = 14

 

 

 

 

 

 

 

 

h = 1.0 mn

 

 

 

 

 

 

 

 

W = 0.04λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L = 0.05λ

Freq. = 759.7 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rin [Ω]

Rr [Ω]

Rl [Ω]

 

η [dB]

Gain [dBi]

 

20.28

11.4

8.88

 

2.50163

3.61452

 

Figure 7.39 Dimensional parameters and radiation performances of 0.05λ MLAs for cases εr = 1 and 10 ([14], copyright C 2005 IEEE).

W = 44.3 mm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lf = 2.6 mm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L = 22

mm

 

d = 0.2 (s = 0.3) mm

 

 

 

d = 0.4 (s = 0.1) mm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W = 18.9 mm

W = 24.4 mm

Figure 7.40 A trial 0.05λ folded MLA model ([13], copyright C 2004 IEICE).

parameters and antenna performances of 0.05λ MLAs of both dipole type and folded type. In the figure, (a) gives results when the substrate εr = 1, while (b) represents the substrate εr = 10. A trial model is depicted in Figure 7.40, which has an asymmetric structure, with the element width d of the driven element (0.2 mm) different from that of the folded element (0.4 mm) in order to keep the loss resistance as small as possible. Antennas are designed for the resonance frequency of 700 MHz for both the

7.2 Design and practice of ESA

115

 

 

1.0j

 

 

 

 

2.0j

 

 

 

 

2.0j

 

 

 

 

 

 

 

 

 

0.2j

 

715 MHz

 

 

 

 

 

 

5.0j

 

 

 

 

 

 

 

 

770 MHz

02

05

10

20

50

02

05

10

20

50

 

 

 

740 MHz

0.2j

 

685 MHz

 

 

5.0j

 

 

 

5.0j

 

 

 

 

 

 

 

 

0.5j

 

 

 

2.0j

0.5j

 

 

 

2.0j

 

 

1.0j

 

 

 

 

1.0j

 

 

 

 

(a)

 

 

 

 

(b)

 

 

Figure 7.41 Impedance characteristics of 0.05λ dipole-type and folded-type MLA ([13], copyrightC 2004 IEICE).

 

[dBd]

 

Dipole type

0

Folded type

 

Figure 7.42 Radiation patterns of 0.05λ dipole-type and folded-type MLA ([13], copyright C 2004 IEICE).

driven element and the folded element. Figure 7.41 illustrates impedance characteristics; (a) for the dipole type and (b) for the folded type. Figure 7.42 shows radiation patterns of both dipole type and folded type. These figures give evidence of advantageous performances of the folded type against the dipole type. Figure 7.43 depicts VSWR performance, showing the bandwidth of about 12 MHz for VSWR = 2, which

116

Design and practice of small antennas I

 

 

 

4

 

 

 

 

 

3

 

 

 

 

VSWR

2

 

12 MHz

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

0

751

757

763

769

 

745

Frequency (MHz)

Figure 7.43 VSWR performance of 0.05λ folded-type MLA ([13], copyright C 2004 IEICE).

 

 

 

 

j50

 

 

 

 

j25

N

= 14

 

N = 38

 

j100

 

 

 

 

 

 

 

 

 

j12.5

 

 

 

770

 

 

j200

 

 

 

 

 

 

 

 

 

 

765

 

720

 

 

 

 

715

 

 

 

 

 

 

 

 

 

1

0.5

 

760

0

710

0.5

Inf

 

 

50

150

0

36.9

 

 

 

 

 

 

 

63.83Ω

 

 

 

 

20.28Ω

 

 

 

 

705

700

 

 

755

 

 

 

 

 

 

 

 

 

j12.5

 

 

 

750

 

 

j200

 

 

 

 

 

 

 

j25

 

 

 

 

 

j100

 

 

 

 

 

 

 

 

 

 

 

j50

 

 

Figure 7.44 Impedance characteristics of 0.05λ MLA for different N ([14], copyright C 2005 IEEE).

corresponds to 1.6% in terms of the relative bandwidth. Figure 7.44 illustrates impedance characteristics for cases of N = 14 and 38, corresponding to εr = 10 and 1, respectively. Figure 7.45 shows radiation patterns, also for cases N = 14 and 38. Increase in gain for the case N = 14 was observed.

An example of a practically developed small MLA introduced previously (Figure 7.6) [5] is a monopole type etched on both sides of a dielectric substrate (glass epoxy) fed with coplanar waveguide. The antenna element occupies the substrate surface with an area of 61 mm × 61 mm and the meander line of 0.5 mm width is spaced periodically with 0.5 mm. The antenna pattern is designed to receive vertical polarization by the front side and horizontal polarization by the back side by arranging the meander line

7.2 Design and practice of ESA

117

 

 

3.6 dBi

8.8 dBi

270

0

[dBi]

10

20 30

180 [deg.]

N = 14

N = 38

90

Figure 7.45 Radiation patterns of 0.05λ MLA for different N ([14], copyright C 2005 IEEE).

 

0

 

–5

(dB)

–10

loss

 

Return

–15

 

 

–20

 

–25

200 400 600 800 1000

Frequency (MHz)

Figure 7.46 Return-loss characteristics of a MLA shown in Figure 7.6 ([5], copyright C 2006 IEICE).

pattern parallel to the ground plane on the front side, while vertical on the back side. The return-loss characteristics, gain, and calculated radiation patterns, respectively, at 600 MHz are given in Figures 7.4648. In Figure 7.48, (a) and (b) illustrate radiation patterns on the azimuth plane (yz plane) and the elevation plane (xz plane), respectively, for the antenna on the front side, and (c) and (d) show those on the azimuth plane and the elevation plane, respectively, for the antenna on the back side. The gain is evaluated to be greater than –3 dBd in the frequency range between 550 MHz and 800 MHz, and the return-loss characteristic is less than –5 dBd for the frequency range of 500 MHz to 700 MHz. This antenna is designed to receive UHF band terrestrial TV broadcasting.

Соседние файлы в папке OC