Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
91
Добавлен:
18.05.2015
Размер:
10.23 Mб
Скачать

Часть III. Патофизиология органов и систем

гипоксия может стимулировать метаболические и пластические процессы в нейроне, способство­вать адаптации и повышению резистентности, повышать трофический и пластический потен­циал нейрона, усиливать адаптационные возмож­ности мозга. Дозированная гипоксия применя­ется для профилактики и лечения ряда заболе­ваний центральной нервной системы.

20.3.7. Синаптическая стимуляция и повреждение нейронов

Возбуждающая синаптическая стимуляция может играть важную роль в развитии патоло­гии нейрона. Усиленная и длительная синапти­ческая стимуляция сама по себе вызывает фун­кциональное перенапряжение нейрона, его стресс, который может завершиться дегенерацией внутриклеточных структур. Стрессорные повреж­дения усиливаются при нарушениях микроцир­куляции и мозгового кровообращения, при дей­ствии токсических факторов.

Первостепенное значение синаптическая сти­муляция имеет при развитии аноксических (ише-мических) повреждений. Культура тканей ней­ронов становится чувствительной к аноксии лишь после установления синаптических контактов между нейронами. Весьма чувствительны к анок­сии нейроны коры и гиппокампа, в которых имеется высокая плотность возбуждающих си­наптических входов. Синаптическая стимуляция реализуется через действие возбуждающих ами­нокислот (глутамат, аспартат, L-гомоцистеинат), причем эти повреждения подобны тем, которые возникают при ишемии и связаны с увеличен­ным содержанием внутриклеточного Ca2t. Этот эффект известен как нейротоксическое (или цитотоксическое) действие возбуждающих ами­нокислот. С синаптической гиперактивацией, действием возбуждающих аминокислот и гипок­сией связаны повреждение и гибель нейронов при эпилептическом статусе и в постишемичес-ком периоде. При этом к патогенному действию указанных факторов присоединяется энергети­ческий дефицит.

В связи с изложенным становятся понятны­ми благоприятные эффекты (т.е. ослабление си-наптического воздействия) уменьшения функ­циональной нагрузки, предотвращение дополни­тельных раздражений, «охранительное», по И.П. Павлову, торможение обратимо поврежденных нейронов.

20.3.8. Нарушение структурногогомеостаза нейрона

Значительную роль в патологии нейрона иг­рают нарушения внутриклеточного структурно­го гомеостаза. В норме процессы изнашивания и распада внутриклеточных структур уравнове­шиваются процессами их обновления и регене­рации. Совокупность этих процессов составляет динамический структурный внутриклеточный гомеостаз.

Внутриклеточная регенерация - универсаль­ный биологический механизм, имеющий место во всех клетках организма. Для жизнедеятель­ности нейрона, который, как высокодифферен-цированная клетка, не способен митотически делиться, этот механизм имеет существенное значение - внутриклеточная регенерация явля­ется единственным способом структурного обнов­ления нейронов и поддержания их целостности. К ней относятся синтез белков, образование внут­риклеточных органелл, митохондрий, мембран­ных структур, рецепторов, рост нервных отрост­ков (аксоны, дендриты, дендритные шипики) и

ДР-

Процессы внутриклеточной регенерации тре­буют высокого энергетического и трофического обеспечения и полноценного метаболизма клет­ки. При повреждениях нейрона, возникновении энергетического и трофического дефицита, на­рушениях деятельности генома страдает внут­риклеточная регенерация, падает пластический потенциал клетки, распад внутриклеточных структур не уравновешивается их восстановле­нием - происходят глубокие нарушения дина­мического структурного гомеостаза нейрона; при прогрессировании этого процесса нейрон поги­бает.

20.3.9. Нарушение деятельностинейрона при изменении процессоввнутриклеточной сигнализации

После восприятия рецептором сигнала (свя­зывания рецептором нейромедиатора, гормона и др.) в нейроне возникает каскад цепных метабо­лических процессов, обеспечивающих необходи­мую активность нейрона. Существенную роль в этих процессах играют так называемые усили­тельные, или пусковые, ферменты и образую­щиеся под их влиянием вещества-посредники, вторичные мессенджеры.

669

Два типа из указанных процессов наиболее изучены: в одном из них (система АЦ-аза -цАМФ) роль пускового усилительного фермента играет аденилатциклаза (АЦ-аза), а роль связан­ного с ней вторичного мессенджера - цикличес­кий аденозинмонофосфат (цАМФ); в другом (си­стема фосфоинозитидов) пусковым ферментом является фосфолипаза С, а в качестве вторич­ных мессенджеров выступают инозиттрифосфат (ИФ.1) и диацилглицерин (ДАГ). Роль универ­сального вторичного мессенджера играет Са2*, принимающий участие практически во всех внут­риклеточных процессах. Существенным резуль­татом деятельности указанных систем и Са2+ является активация ряда протеинкиназ, кото­рые обеспечивают фосфорилирование и повыше­ние, таким образом, активности различных функ­циональных белков - мембранных, цитоплазма-тических и ядерных, ионных каналов, с чем свя­заны осуществление функций нейрона и его жизнедеятельность.

Совокупность указанных каскадных мембран­ных и внутриклеточных процессов составляет эндогенную усилительную систему нейрона, которая может обеспечить многократное усиле­ние входного сигнала и возрастание его эффекта на выходе из нейрона. Так, каскад метаболичес­ких процессов АЦ-азного пути может усилить эффект стимула в 107 - 108 раз. Благодаря этому возможны выявление и реализация слабого сиг­нала, что имеет особое значение в условиях па­тологии, при нарушении синаптического прове­дения.

Многие изменения функций нейрона связа­ны с действием патогенных агентов на те или иные звенья указанных систем внутриклеточной сигнализации. Фармакологическая коррекция деятельности нейрона и эффекты лечебных средств также реализуются через соответствую­щие изменения этих систем. Так, холерный и коклюшный токсины действуют на процессы, связанные с активностью мембранных G-белков, активирующих или угнетающих АЦ-азу. Ксан-тины (теофиллин, кофеин) обусловливают накоп­ление цАМФ, что приводит к усиленной деятель­ности нейрона. При действии ряда противосудо-рожных препаратов (например, дифенилгидан-тоина, карбамазепина, бензодиазепинов) и пси­хотропных средств (например, трифтазина) уг­нетаются разные пути фосфорилирования бел-

670

ков, благодаря чему снижается активность ней­ронов. Ионы лития, применяемые при лечении некоторых эндогенных психозов, ослабляют де­ятельность системы фосфоинозитидов. С усилен­ным входом Са21 связана эпилептизация нейро­нов, блокада этого входа антагонистами Са2* по­давляет эпилептическую активность.

20.3.10. Гиперактивность нейрона

Гиперактивность нейрона обусловлена значи­тельным, выходящим из-под контроля наруше­нием баланса между возбуждением и торможе­нием нейрона в пользу возбуждения. В функци­ональном отношении она заключается в проду­цировании нейроном усиленного потока импуль­сов, который может иметь различный характер: высокочастотные потенциалы действия; отдель­ные разряды; разряды, сгруппированные в пач­ки, и пр. Особый вид гиперактивности представ­ляет собой пароксизмальный деполяризацион-ный сдвиг (ПДС) в мембране, на высоте которо­го возникает высокочастотный разряд (рис. 189). Такой вид гиперактивности рассматривается как проявление эпилептизации нейрона.

Указанный сдвиг баланса между возбуждени­ем и торможением может быть обусловлен либо первичным усиленным возбуждением нейрона, преодолевающим тормозный контроль, либо пер­вичной недостаточностью тормозного контроля. Первый механизм реализуется значительной деполяризацией мембраны и усиленным входом Na+ и Са2* в нейрон, второй - расстройством ме­ханизмов, обеспечивающих гиперполяризацию мембраны: нарушением выхода К+ из нейрона и входа С1~ в нейрон.

Существенным эндогенным регулятором ак­тивности нейрона является у-аминомасляная кислота (ГАМК). Она вызывает торможение ней­рона при связывании со своим рецептором, вхо­дящим в сложный белковый дГАМК-комплекс, который состоит из нескольких субъединиц; при активации комплекса под влиянием ГАМК уси­ливается поступление С1~ в нейрон. При растор-маживании нейрона в связи с ослаблением ги­перполяризации и деполяризацией мембраны происходит усиление поступления Са2* в нейрон. Кроме того, Са2*, находясь уже в цитозоле, на­рушает поступление С1" в нейрон, ослабляя, та­ким образом, изнутри «ГАМКергическое» тор­можение. Со всеми этими путями действия Ca2f

Соседние файлы в папке Учебник