Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
91
Добавлен:
18.05.2015
Размер:
10.23 Mб
Скачать

Часть III. Патофизиология органов и систем

ний является необходимой частью комплексной патогенетической терапии.

20.3. ПАТОЛОГИЯ НЕЙРОНА

20.3.1. Нарушение проведения возбуждения

Распространение возбуждения по нервному волокну обеспечивается последовательным соче­танием одних и тех же процессов: деполяриза­цией участка мембраны волокна > входом в этом участке Na* > деполяризацией соседнего участ­ка мембраны > входом в этом участке Na+ и т.д.

При недостаточном входе Na* нарушается ге­нерация распространяющегося потенциала дей­ствия и проведение прекращается. Такой эффект имеет место при блокаде Ыа+-каналов местными анестетиками (новокаин, лидокаин и др.) и ря­дом других химических агентов. Специфическим блокатором Na^-каналов является тетродотоксин - яд, вырабатывающийся во внутренних органах рыбы фугу. Блокирование проведения возбуж­дения вызывают также вещества, нарушающие процесс реполяризации мембраны, связанный с закрыванием Na'-каналов. К ним относятся инсектициды (например, ДДТ), вератридин, ако­нитин, батрахотоксин и др.

Исходная разность концентрации ионов Na* и К* по обе стороны мембраны (Na+в 10-15 раз больше снаружи, К+ в 50-70 раз больше внутри), необходимая для генерации потенциала дей­ствия, восстанавливается и поддерживается ак­тивным транспортом ионов Na+-, К+-насосом. Он выкачивает наружу Na', поступивший внутрь (в цитоплазму) во время возбуждения, в обмен на наружный К+, который вышел наружу во время возбуждения. Деятельность насоса, роль кото­рого выполняет встроенная в мембрану Na*-, K*-АТФаза, обеспечивается энергией, высвобожда­ющейся при расщеплении АТФ. Дефицит энер­гии ведет к нарушению работы насоса, что обус­ловливает неспособность мембраны генерировать потенциал действия и проводить возбуждение. Такой эффект вызывают разобщители окисли­тельного фосфорилирования (например, динит-рофенол) и другие метаболические яды, а также ишемия и длительное охлаждение участка не­рва. Ингибируют насос и, как следствие этого, нарушают проводимость сердечные гликозиды (например, уабаин, строфантин) при их приме­нении в относительно больших дозах.

Проведение возбуждения по аксону наруша­ется при различных видах патологии перифери­ческих нервов и нервных волокон в ЦНС - при воспалительных процессах, Рубцовых изменени­ях нерва, при сдавлении нервных волокон, при демиелинизации волокон (аллергические процес­сы, рассеянный склероз), при ожогах и др. Про­ведение возбуждения прекращается при дегене­рации аксона.

20.3.2. Нарушение аксональноготранспорта

Аксональный транспорт из тела нейрона в нервное окончание и из нервного окончания в тело нейрона осуществляется при участии ней-рофиламентов, микротрубочек и контрактильных актино- и миозиноподобных белков, сокращение которых зависит от содержания Саг+ в среде и от энергии расщепления АТФ. Вещества, разруша­ющие микротрубочки и нейрофиламенты (кол-хицин.винбластин и др.), недостаток АТФ, ме­таболические яды, создающие дефицит энергии (динитрофенол, цианиды), нарушают аксоток. Аксональный транспорт страдает при дегенера­ции аксона, вызываемой недостатком витамина В6 и витамина В,) (болезнь бери-бери), промыш­ленными ядами (например, акриламидом, гек-сахлорофосом), солями тяжелых металлов (на­пример, свинца), фармакологическими препара­тами (например, дисульфирамом), алкоголем, при диабете, при сдавлении нервов и при дист­рофических повреждениях нейрона. При пере­рыве аксона возникает уоллеровская дегенера­ция (распад) его периферической части и рет­роградная дегенерация центральной части. Эти процессы связаны с нарушением трофики в обе­их частях аксона.

Расстройства аксонального транспорта трофо-генов и веществ, необходимых для образования и выделения медиаторов нервным окончанием, обусловливают развитие дистрофических изме­нений нейронов и иннервируемых тканей и на­рушение синаптических процессов. Распростра­нение с аксональным транспортом патотрофоге-нов, антител к нервной ткани и к нейромедиато-рам приводит к вовлечению в патологический процесс нейронов в соответствующих отделах ЦНС.

20.3.3. Патология дендритов

Дендриты и их шипики являются самыми

665

ранимыми структурами нейрона. При старении шипики и ветви дендритов редуцируются, при некоторых дегенеративных и атрофических за­болеваниях мозга (старческое слабоумие, болезнь Альцгеймера) они не выявляются. Дендро-ши-пиковый аппарат страдает при гипоксии, ише­мии, сотрясении мозга, стрессорных и невроти-зирующих воздействиях. Патология дендритов связана также с нарушением их микротрубочек, которые исчезают при действии различных па­тогенных агентов.

20.3.4. Патология нейрональных мембран

Повреждения как клеточной (цитоплазмати-ческой), так и внутриклеточных мембран воз­никают при различных патогенных воздействи­ях, и сами являются причиной дальнейшего раз­вития патологии нейрона.

Усиленное перекисное окисление липидов (ПОЛ) нейрональных мембран оказывает влия­ние не только на мембранные, но и на другие внутриклеточные процессы.

Практически нет патологического процесса в нервной системе, при котором не возникало бы усиленного ПОЛ. Оно имеет место при эпилеп­сии, эндогенных психозах (например, шизофре­нии, маниакально-депрессивном синдроме), при неврозах, различного рода стрессах и поврежде­ниях, при ишемии, хронической гипоксии, функ­циональных перегрузках нейронов и пр. С ним связана дальнейшая гиперактивация нейронов.

Вследствие увеличения проницаемости мемб­ран происходит выход из нейрона различных веществ, в том числе антигенов, которые вызы­вают образование антинейрональных антител, что приводит к развитию аутоиммунного про­цесса. Нарушение барьерных свойств мембран обусловливает возрастание тока ионов Са2* и Na' в нейрон и К+ - из нейрона; эти процессы в со­четании с недостаточностью энергозависимых Na+-, K+- и Са2+-насосов (их деятельность изме­няется также под влиянием усиленного ПОЛ) приводят к частичной деполяризации мембра­ны. Увеличенный вход Са2+ не только вызывает гиперактивацию нейрона, но и при чрезмерном его содержании в клетке ведет к патологичес­ким изменениям метаболизма и внутриклеточ­ным повреждениям. Весь указанный комплекс процессов, если он не подавляется и не компен­сируется, обусловливает гибель нейрона.

Нормализация ПОЛ и стабилизация нейро­нальных мембран должны быть частью комплек­сной патогенетической терапии различных форм патологии НС.

20.3.5. Энергетический дефицит

Потребность нейронов в энергообеспечении -самая высокая из всех клеток организма, и на­рушение энергообеспечения является одной из распространенных причин патологии нейрона. Энергетический дефицит может быть первичным - при действии метаболических ядов (например, динитрофенола, цианидов), либо вторичным - при различных повреждениях, нарушениях крово­обращения, шоке, отеке, общих судорогах, уси­ленной функциональной нагрузке и др. Дефи­цит энергии относится к разряду типовых внут­риклеточных патологических процессов.

Главными условиями развития энергетичес­кого дефицита являются недостаток кислорода и значительное повреждение митохондрий, в которых синтезируется основной носитель энер­гии - АТФ. Причиной дефицита энергии может быть также недостаток субстрата окисления, в частности глюкозы, которая является для мозга основным субстратом окисления. Нейроны коры не имеют запасов глюкозы и потребляют ее не­посредственно из крови (глюкоза свободно про­ходит ГЭБ), поэтому они особенно чувствитель­ны к гипогликемии. Мозг потребляет около 20% от всей находящейся в крови глюкозы. Инсули-новые шоки, применяемые для лечения некото­рых психозов, связаны с глубокой гипоглике­мией и протекают с потерей сознания и нередко с судорогами. При ряде патологических состоя­ний (травматический шок, кровопотеря) мозг может дольше обеспечиваться кислородом и глю­козой благодаря перераспределению крови и уменьшению их потребления другими тканями. Для быстрейшего восстановления деятельности мозга после общих судорог необходим достаточ­но высокий уровень глюкозы в крови. Энергети­ческий дефицит усугубляется нарушением цик­ла Кребса.

При глубоком нарушении окислительного фосфорилирования и синтеза макроэргов источ­ником энергии становится анаэробный гликолиз. Он имеет характер компенсаторного механизма, однако его эффект не может восполнить дефи­цит энергии, а нарастающее увеличение содер­жания молочной кислоты в мозге оказывает от-

666

рицательное влияние на деятельность нейронов и усугубляет отек мозга.

20.3.6. Эффекты ишемии и гипоксии

В связи с высокой потребностью в энергии нейроны ЦНС нуждаются в значительном кис­лородном обеспечении. Нейрон коры головного мозга потребляет 250-450 мкл 02/мин (для срав­нения - глиоцит и гепатоцит потребляют до 60 мкл 02). Снижение потребления кислорода моз­гом всего лишь на 20% может вызвать потерю сознания у человека. Исчезновение импульсной активности нейронов возникает уже в первые десятки секунд ишемии мозга. Через 5-6 мин после начала асфиксии наступает глубокое и нередко необратимое нарушение деятельности мозга. Гибель нейрона при ишемии является результатом осуществления комплекса взаимо­связанных внутриклеточных процессов (схема 38).

При аноксии головного мозга в первую оче­редь страдает кора. Гибель всего мозга означает «мозговую смерть», которая проявляется в пол­ном исчезновении биоэлектрической активнос­ти. При наступлении «мозговой смерти» соглас­но законодательству можно брать у погибшего

внутренние органы для пересадки - они еще фун­кционируют, так как более резистентны к анок­сии, чем ЦНС. Филогенетически более старые структуры ЦНС (спинной мозг, ствол головного мозга) менее чувствительны к асфиксии, чем молодые (подкорка и особенно кора). Поэтому при запоздалом оживлении организма может наступить декортикация, «бескорковый» орга­низм может существовать на искусственном ды­хании.

Весьма чувствительны к аноксии тормозные механизмы. Одним из следствий этого является растормаживание неповрежденных структур ЦНС. На ранних стадиях ишемии, когда нейро­ны мозга еще способны давать реакцию, они могут гиперактивироваться. На поздних стади­ях ишемии гиперактивация нейронов сменяет­ся их инактивацией.

С входом Na+ в нейрон связана первая, ост­рая фаза поражения нейрона. Возрастание кон­центрации Na+ в цитозоле нейрона приводит к повышению осмолярности, что обусловливает вход воды в нейрон и его набухание. В дальней­шем повышение осмолярности нейрона связано также с накоплением в нем Са2', молочной кис­лоты, неорганического фосфора. С входом Са2+в

Соседние файлы в папке Учебник