Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
CS 220 / ARM / ARM1176JZ-S Technical Reference Mmanual.pdf
Источник:
Скачиваний:
47
Добавлен:
16.04.2015
Размер:
4.47 Mб
Скачать

Clocking and Resets

9.2Clocking and resets with no IEM

This section describes clocking and resets for the processor with no IEM:

Processor clocking with no IEM

Reset with no IEM on page 9-4.

9.2.1Processor clocking with no IEM

Externally to the processor, you must connect CLKIN and FREECLKIN together.

Logically, the processor has only one clock domain.

The four level two interfaces use dedicated clock enables ACLKENI, ACLKENRW,

ACLKENP, and ACLKEND.

The four clock inputs ACLKI, ACLKRW, ACLKP and ACLKD are not used and must be left unconnected when you implement the processor.

The SYNCMODEREQ* and SYNCMODEACK* signals are not used and must be left unconnected.

All clocks can be stopped indefinitely without loss of state.

Figure 9-1 shows the clocks for the processor with no IEM.

 

RAMs

 

CLKIN

Core

 

 

 

 

Instruction

Data read/

DMA level

Peripheral

level 2

write level

level 2

2 interface

interface

2 interface

interface

 

Clock enables

 

 

 

Level 2

Figure 9-1 Processor clocks with no IEM

Read latency penalty with no IEM

The Nonsequential Noncacheable read-latency with zero-wait-state AXI is a six-cycle penalty over a cache hit, where data is returned in the DC2 cycle, on the data side, and a five-cycle penalty over a cache hit on the instruction side.

In the first cycle after the data cache miss, a read-after-write hazard check is performed against the contents of the Write Buffer. This prevents stalling while waiting for the Write Buffer to drain. Following that, a request is made to the AXI interface, and subsequently a transfer is

ARM DDI 0333H

Copyright © 2004-2009 ARM Limited. All rights reserved.

9-3

ID012410

Non-Confidential, Unrestricted Access

 

Clocking and Resets

started on the AXI. In the next cycle data is returned to the AXI interface, from where it is returned first to the level one clock domain before being forwarded to the core. Figure 9-2 shows this.

 

DC1

 

DC2

 

RAW

 

L2Req ARVALIDRW RDATARW Data to L1 Data to LSU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fe1

 

Fe2

 

L2Req

 

ARVALIDI

 

RDATAI

 

Data to L1 Data to PU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-2 Read latency with no IEM

The same sequence appears on the I-Side, except that there is less to do in the equivalent RAW cycle.

9.2.2Reset with no IEM

The processor has the following reset inputs:

nRESETIN

The nRESETIN signal is the main processor reset that initializes the

 

majority of the processor logic.

DBGnTRST

The DBGnTRST signal is the DBGTAP reset.

nPORESETIN

The nPORESETIN signal is the power-on reset that initializes the CP14

 

debug logic. See CP14 registers reset on page 13-25 for details.

nVFPRESETIN

The nVFPRESETIN signal is not connected and you must tie it LOW.

All of these are active LOW signals that reset logic in the processor.

The following reset signals are only used if IEM is implemented. Otherwise, these inputs are not connected to any logic internally, and you must connect them according to your design rules:

ARESETIn

ARESETRWn

ARESETPn

ARESETDn.

ARM DDI 0333H

Copyright © 2004-2009 ARM Limited. All rights reserved.

9-4

ID012410

Non-Confidential, Unrestricted Access

 

Соседние файлы в папке ARM