
- •Тема 1. Вступ. Кінематика поступального руху.
- •Вступ. Кінематика поступального руху (2 год.)
- •1. Основні поняття механіки.
- •2. Радіус-вектор. Переміщення. Траєкторія. Пройдений шлях.
- •Тема 2. Кінематика обертального руху. Кінематика обертального руху (2 год.)
- •Основні поняття кінематики обертального руху.
- •Основні елементи кінематики рівномірного обертального руху
- •Обертального руху:
- •Обертальний рух:
- •Повне прискорення матеріальної точки, що виконує
- •Момент сили, що діє на і-ту матеріальну точку:
- •Тема 3. Динаміка поступального руху матеріальної точки.
- •Основні поняття динаміки поступального руху матеріальної точки і твердого тіла:
- •Перший закон Ньютона і поняття інерціальної системи відліку
- •Другий закон Ньютона
- •Третій закон Ньютона
- •Закон збереження імпульсу механічної системи
- •Теорема про рух центра мас механічної системи:
- •Тема 4. Закони збереження в механіці. Закони збереження енергії та імпульсу в механіці (2 год.)
- •Тема 5. Динаміка обертального руху. Динаміка обертального руху. (2 год.)
- •Рівняння динаміки обертального руху
- •4.8. Момент імпульсу і момент інерції
- •4.9. Момент сили і момент інерції
- •4.10. Момент інерції геометричного тіла
- •4.11. Теорема Штейнера. Закон додавання моментів інерції
- •4.12. Закон збереження моменту імпульсу
- •2). Приклади виконання закону збереження моменту імпульсу
- •4.13. Кінетична енергія тіла, що обертається
- •Тема 6.Механічний принцип відносності. Механічний принцип відносності. (2 год.)
- •Перетворення Галілея та механічний принцип відносності
- •Механічний рух. Система відліку. Відносність руху. Матеріальна точка. Траєкторія. Шлях і переміщення. Швидкість. Додавання швидкостей. Прискорення.
- •Рівномірний рух
- •Рівноприскорений рух
- •Рівномірний рух по колу. Період і частота. Лінійна і кутова швидкості. Доцентрове прискорення.
- •Перший закон Ньютона.Інерціальна система відліку. Принцип відносності Галілея.
- •Принцип відносності у класичній механиці (прнцип Галілея):
- •Принцип відносності Енштейна:
- •Маса. Сила. Додавання сил. Другий закон Ньютона.Третій закон Ньютона.
- •Гравітаційні сили. Закон всесвітнього тяжіння. Сила тяжіння. Рух тіла з початковою швидкістю під дією сили тяжіння.
- •Закон пружних деформацій (закон Гука)
- •Тема 7. Елементи релятивістської динаміки. Елементи релятивістської динаміки (2 год.)
- •Тема 8. Електростатичне поле. Електростатичне поле (2 год.)
- •Електростатичне поле
- •Гравітаційне поле та його характеристики. Зв’язок напруженості поля з його потенціалом:
- •Тема 9. Провідник в електричному полі. Провідник в електричному полі (2 год.)
- •Розподіл заряду в провіднику. Зв'язок між напруженістю поля в поверхні провідника й поверхневою густиною заряду
- •§2 Електроємність провідників. Конденсатори
- •3 Енергія електростатичного поля
- •3. Енергія зарядженого конденсатора.
- •Основні формули
- •Тема 10. Постійний електричний струм.
- •Постійний електричний струм (2 год)
- •1. Пості́йний струм, його джерела
- •2. Машини постійного струму
- •4. Закон Ома для замкнутого кола.
- •Тема 11. Електричний струм в рідинах і в газах Електричний струм в рідинах та газах (2 год)
- •Тема 12. Магнітне поле у вакуумі. Магнітне поле у вакуумі . (2 год.)
- •Потенціал електричного поля. Напруженість як градієнт потенціалу
- •Напряженность вихревого поля внутри свернутого соленоида
- •Токовый дипольный момент тороида
- •Тороид – основа самоорганизации движения материи
- •Основні формули
- •Тема 13.Явище електромагнітної індукції. Явище електромагнітної індукції (2 год.)
- •Тема 14. Магнітне поле в речовині. Магнітне поле в речовині (2 год.)
- •§1 Феромагнетики
- •§2 Магнітні властивості атомів
- •§3 Діамагнетизм
- •§4 Парамагнетизм
- •Рівняння електродинаміки в диференціальній формі
- •Сгсг ]у вакуумі
- •У середовищі
- •Пояснення
- •[Ред.]Історична довідка
- •Неінваріантність відносно перетворень Галілея
- •Тема 15. Коливання та хвилі Коливання та хвилі (2 год)
- •Коливальний рух. Математичний та пружинний маятники
- •Тема 16. Складання коливань Складання коливань (2 год)
- •Тема 17. Загасаючі коливання Загасаючі коливання (2 год)
- •Тема 18. Вимушені механічні та електромагнітні коливання Вимушені механічні та електромагнітні коливання (2 год)
- •Тема 19. Хвилі Хвилі (2 год)
- •Утворення хвиль в пружному середовищі. Поздовжні і поперечні хвилі. Рівняння біжучої хвилі
- •Тема 20. Фазова і групова швидкість хвилі. Вектор Пойгтінга. Фазова і групова швидкість хвилі. Вектор Пойгтінга (2 год)
- •Тема 21. Електромагнітні хвилі Електромагнітні хвилі (2 год)
- •Сгсг у вакуумі
- •У середовищі
- •Пояснення
- •Історична довідка
- •Неінваріантність відносно перетворень Галілея
- •Енергія електромагнітної хвилі. Густина потоку випромінювання
- •Експеримент:
- •Класифікація радіохвиль по видах, довжині, частотах. Галузі застосування радіохвиль
- •Розповсюдження радіохвиль
- •Закріплення матеріалу
- •Тема 22. Геометрична оптика Геометрична оптика (2 год.)
- •Тема 23. Хвильова оптика. Інтерференція світла. Хвильова оптика. Інтерференція світла (2 год.)
- •Тема 24. Дифракція світла
- •Дифракція світла (2 год.)
- •Принцип Гюйгенса-Френеля
- •Дифракция света
- •4.3. Дифракция Френеля на круглом отверстии и диске
- •4.3.1. Дифракция Френеля на круглом отверстии
- •Тема 24. Ди Дифракционная решетка
- •4.8. Понятие о голографии
- •Тема 25. Поляризація світла.
- •Поляризація світла (2 год.)
- •Поляризация при отражении и преломлении Закон Брюстера
- •Подвійне променезаломлення
- •Тема 26. Квантова оптика
- •Квантова оптика (2 год.)
- •Теплове випромінювання та його рівноважність
- •18.2. Закони теплового випромінювання
- •18.2. 1. Закон Кірхгофа.
- •18.2. 2. Закон Cтефана-Больцмана.
- •18.2. 3. Закон випромінювання Віна.
- •18.2. 4. Закон зміщення Віна.
- •18.2. 5. Формула Релея - Джінса
- •18.2. 6. Гіпотеза та формула Планка
- •18.3. Розрахунок сталих Стефана - Больцмана та Віна за допомогою формули п ланка
- •Тема 27. Елементи квантової механіки.
- •Елементи квантової механіки (2 год.)
- •Співвідношення невизначеностей як прояв корпускулярно-хвильового дуалізму властивостей матерії. Обмеженість механічного детермінізму
- •Тема 28. Рівняння Шредінгера
- •Рівняння Шредінгера (2 год.)
- •Незбуреному стану частинки відповідає енергія
- •Тема 29. Фізика атомів і атомних ядер.
- •Фізика атомів і атомних ядер (2 год)
- •Тема 30. Періодична система елементів.
- •Періодична система елементів (2 год)
- •Тема 31. Атомне ядро.
- •Атомне ядро (2 год)
- •Радіоактивність. Основний закон радіоактивного перетворення атомних ядер
- •20.11. Реакції поділу урану та ядерна енергетика
- •20.12. Реакції синтезу ядер та термоядерна енергетика
- •Реакція синтезу атомних ядер. Проблема керованих термоядерних реакцій
- •Тема 32. Основи статистичної фізики.
- •Основи статистичної фізики (2 год.)
- •Статистична фізика
- •Процеси нерівноважної термодинаміки
- •Основні поняття термодинаміки
- •Термодинамічні потенціали
- •Спряжені термодинамічні змінні
- •Диференціали від термодинамічних потенціалів
- •Фазові перетворення
- •Абсолютна шкала температур
- •Рівноважне випромінювання
- •Нерівноважна термодинаміка
- •Лінійна нерівноважна термодинаміка
- •Відкриті системи далекі від рівноваги
- •Тема 33. Функція розподілу.
- •Функція розподілу (2 год.)
- •Тема 34. Кінетична теорія газів.
- •Кінетична теорія газів (2 год.)
- •Основне рівняння молекулярно-кінетичної теорії
- •Середня кінетична енергія молекул. Молекулярно-кінетичне трактування абсолютної температури
- •Тема 35. Основи термодинаміки.
- •Основи термодинаміки (2 год.)
- •1 Та 2 закони термодинаміки
- •Цикл карно. Ентропія. Реальні гази Основні формули
- •Тема 36. Елементи фізики твердого тіла.
- •Основи фізики твердого тіла (2 год.)
- •Енергія коливань і теплоємність кристалічної решітки
- •4.1. Модель Ейнштейна
- •4.2. Модель Дебая
- •Тема 37. Поняття про зонну теорію твердих тіл.
- •Поняття про зонну теорію твердих тіл (2 год.)
- •Тема 38. Власна провідність напівпровідників.
- •Власна провідність напівпровідників (2 год.)
- •Тема 39. Домішкова провідність напівпровідників.
- •Домішкова провідність напівпровідників (2 год.)
- •1. Механізм електричної провідності напівпровідників
- •1.2. Енергетичні зони
- •1.3. Рухливість
- •2. Власна щільність
- •3. Види напівпровідників
- •3.1. За характером провідності
- •3.1.1. Власна провідність
- •3.1.2. Домішкова провідність
- •3.2. По виду провідності
- •3.2.1. Електронні напівпровідники ( n-типу)
- •3.2.2. Діркові напівпровідники ( р-типу)
- •Тема 40. Елементи квантової теорії електропровідності металів. Елементи квантової теорії електропровідності металів (2 год)
- •Ефект Пельтьє
- •Відкриття ефекту Пельтьє
- •Пояснення ефекту Пельтьє
- •Застосування ефекту Пельтьє Модулі Пельтьє
- •Тема 41. Випрямлення на контакті метал-напівпровідн Випрямлення на контакті метал-напівпровідник (2 год)
- •Эффект Шоттки
- •Тема 42. Напівпровідникові діоди та транзистори.
- •Напівпровідникові діоди та транзистори (2 год)
- •Коливань решітки, згідно квантової механіки, можна зіставити квазічастинки - фонони. Кожному коливан Напівпровідниковий діод
- •4.2. Транзистор
- •5. Типи напівпровідників в періодичній системі елементів
- •6. Фізичні властивості і застосування
Закріплення матеріалу
Чому взимку і вночі радіоприйом кращий, ніж влітку і вдень?
Чому радіоприймачі погано працюють, коли машина проїжджає під естакадою або мостом?
Чому башти телецентру будують високими?
Чому при роботі на коротких хвилях виникають зони "мовчання"?
Чому не можна здійснити радіозв'язок між підводними човнами, що знаходяться на деякій глибині в океані?
Перша радіограма була передана А.С. Поповим в 1896 році на відстань 250 метрів. За скільки часу радіосигнал пройшов цю відстань?
За міжнародною угодою довжина електромагнітної хвилі, на якій передають сигнал лиха SOS, дорівнює 600 метрів. На якій частоті передаються такі сигнали?
Тема 22. Геометрична оптика Геометрична оптика (2 год.)
Мета: Ввести основні поняття геометричної оптики.
План
Основні поняття
і закони геометричної оптики.
Повне внутрішнє
відбивання..
Література: [1], [2], [3], [5], [6],
[7], [8], [10] – основна; [1], [5] – додаткова.
Основні
поняття оптики
Предмет
вивчення оптики. Геометрична, хвильова,
квантова оптика. Поняття оптики: світло,
світловий промінь, електромагнітна
хвиля, фотони. Корпускулярно-хвильовий
дуалізм. Поширення в просторі
електромагнітної хвилі за Максвеллом.
Шкала електромагнітних хвиль.
Оптика –
це розділ фізики, в якому вивчаються
властивості, фізична природа світла та
його взаємодія з речовиною.
Під світлом розуміють
електромагнітні хвилі таких довжин,
які сприймаються оком людини. Ці хвилі
мають довжину від
до
.
Такий діапазон хвиль називають видимим діапазоном.
Поняття „світло” охоплює не тільки
видиме світло, але й прилеглі до нього
інфрачервоне та ультрафіолетове
випромінювання. Сучасна оптика вивчає
електромагнітні хвилі від м’якого
рентгенівського випромінювання
(
~10-9 м)
до радіохвиль міліметрового діапазону
(
~10-4 м).
Це можна показати за допомогою шкали
електромагнітних хвиль (мал.
1.1):
Мал.
1.1. Шкала електромагнітних хвиль
Оптику
поділяють на геометричну та
фізичну. Геометрична
оптика –
це розділ оптики, в якому вивчаються
закони поширення світла на основі
уявлень про світлові промені. Під світловим
променем розуміють
не вузький світловий пучок, а геометричну
лінію, що вказує напрям переносу енергії
світлової хвилі. Звичайно, чим більш
вузьким є світловий пучок, тим легше за
його допомогою встановити напрям
поширення світла, тобто визначити
світловий промінь. Проте реально
нескінченно вузький світловий пучок
створити неможливо, бо цьому заважає
дифракція світла. Отже, світловий промінь
не є фізичним образом, а є геометричним
поняттям, тобто математичною абстракцією.
Геометрична оптика являє собою засіб
розв’язання більш простих задач оптики,
коли метод променів дає задовільні
результати. Особливо це стосується
побудови зображень в оптичних системах.
Значна частина питань прикладної оптики цілком задовільно може бути дозволена за допомогою положень геометричної оптики, хоча в деяких випадках правильне розв’язання можливе лише з позицій квантової і хвильової теорії світла.
Геометричну оптику можна розглядати як граничний випадок фізичної оптики, коли0. Положення геометричної оптики мають чисто геометричний характер. Під світною точкою розуміють джерело випромінювання, що не має розмірів.
Рисунок 1- Гомоцентричні пучки променів.
Світловий промінь - це лінія, уздовж якої поширюється енергія випромінювання. Світловому променю у фізичній точці відповідає нормаль до поверхні світлової хвилі.
Оптичною довжиною променя називають суму добутків відстаней, послідовно прохідних променем у різних середовищах, на показники переломлення відповідних середовищ. Якщо поверхня хвилі — сфера, то всі нормалі до неї, а отже, і всі промені сходяться в одній точці, а саме в центрі сфери.
Сукупність таких променів називається гомоцентричним пучком, тобто пучком, що має загальний центр. Пучок, промені якого розходяться з загального центру, називається розбіжним гомоцентричним пучком (рис. 1, а), якщо ж промені йдуть у напрямку до центра пучка, то пучок називається що сходитися гомоцентрично (рис. 1, б). Якщо гомоцентричний пучок поширюється від світної точки, що знаходиться в нескінченності, то він буде рівнобіжним (рис. 1, в).
Центр гомоцентричного пучка, що входе в оптичну систему, називається предметною точкою, а центр гомоцентричного пучка, що вийшов з оптичної системи, називається зображенням предметної точки. Усякий предмет і його зображення в геометричній оптиці розглядаються як сукупність предметних точок і їхніх зображень.
Тому для того, щоб знайти зображення того чи іншого предмета, потрібно знайти зображення його окремих точок.
Якщо після проходження через оптичну систему пучки променів зберігають гомоцентричність, то кожній крапці предмета відповідає тільки одна точка зображення. Дві точки, одна з
Рисунок 2- Предметна точка а та її зображення.
яких є зображенням іншої, називають сполученими (рис. 2).
У геометричній оптиці зображення точки прийнято відзначати тою ж буквою, що і предмет, але зі штрихом. Це відноситься і до інших означень. Зображення, створені перетинанням самих променів, називають дійсними,а зображення, створені перетинанням їхніх геометричних продовжень,— уявними.
Дійсне зображення може бути спроектовано на екран, наприклад на фотопластинку. Уявне зображення спроектувати на екран не можна, але воно може бути розглянуто оком так само, як і дійсне зображення. Увесь простір, в якому поширюються пучки променів, можна розділити на дві частини. Простір, у якому знаходяться точки предметів, називають простором предметів. Простір, у якому розташовані зображення точок простору предметів, називають простором зображень.
Оптичною системою в геометричній оптиці називають сукупність оптичних деталей (призм, лінз, дзеркал і т.п.), призначену для формування пучків світлових променів.
Будь-яка оптична деталь обмежується поверхнею. Поверхні можуть бути плоскими, сферичними, асферичними та ін. Оптичну систему називають центрованою, якщо центри сферичних поверхонь або осі симетрії інших поверхонь лежать на одній прямій, що називають оптичною віссю.
Будь-яка площина, що містить оптичну вісь, називається меридіональною. У геометричній оптиці для оцінки відрізків і кутів використовують правила знаків (ДСТ 7427-76). За позитивний напрямок світла приймають напрямок поширення його з ліва на право. Для кожного відрізка вказується напрямок відліку.
Для визначення знаків кутів вибирають осі, від яких відраховують кути. Відрізки уздовж оптичної осі вважаються позитивними, якщо їхній напрямок збігається з позитивним напрямком світла, а негативними — при зворотному напрямку. Відрізки, перпендикулярні до оптичної осі, вважають позитивними, якщо вони розташовані над оптичною віссю, і негативними, якщо вони розташовані під віссю.
Радіуси кривизни, відрізки, що характеризують положення предметів і зображень, відраховують від вершин відповідних поверхонь. Кут вважається позитивним, якщо для опису частини площини між його сторонами вісь, від якої ведеться відлік, потрібно обертати навколо вершини кута за годинниновою стрілкою, і негативним у противному випадку.
Закони геометричної оптики
Рисунок 3- Відбиття променя від дзеркальної поверхні
Теорія геометричної оптики основана на використанні чотирьох фізичних законів.
Закон прямолінійного поширення світла. Відповідно до цього закону світло між двома точками в однорідному і ізотропному середовищі (у середовищі, оптичні властивості якої не залежать від положення точки і від напрямку променя) поширюється по прямій, що з'єднує зазначені точки. На основі закону прямолінійного поширення світла звичайно пояснюють виникнення тіней і напівтіней, явища сонячних і місячних затемнень. Усі найточніші фізичні й астрономічні виміри основані на застосуванні цього закону.
На основі закону прямолінійного поширення світла можна проілюструвати, якщо непрозорий предмет освітити джерелом, розміри якого малі в порівнянні з відстанню до предмета. У цьому випадку спостерігається подоба між контуром предмета і його тінню на екрані, що відповідає геометричному проектуванню за допомогою прямих ліній. Закон прямолінійного поширення світла не застосовується в тих випадках, коли пучок променів проходить крізь діафрагму з дуже малим отвором, край будь-якої діафрагми чи коли на шляху пучка поміщена мала непрозора перешкода. У цих випадках світло поширюється далеко за край тіні чи напівтіні внаслідок явища дифракції. Кут відхилення , викликаний дифракцією, залежить від багатьох факторів і для круглого отвору визначається формулою sin /D, де - довжина хвилі, a D- діаметр діафрагми.
Переважна більшість оптичних систем має великі поперечні розміри в порівнянні з довжиною хвиль, тому при розробці теорії цих систем явище дифракції можна не враховувати. При = 546 нм і D = 80 мм кут від відхилення складає усього ~2".
Закон незалежності поширення світлових пучків. Суть закону полягає в тому, що окремі промені і пучки, зустрічаючись і перетинаючись один з одним, не роблять взаємного впливу. У геометричній оптиці вважають , якщо кілька пучків падають на ту саму площадку чи сходяться в одній крапці, то дії цих пучків складаються. Інтерференцією при цьому зневажають. Явища інтерференції і дифракції необхідно враховувати при аналізі процесу утворення зображення, тому що це дозволяє пояснити розподіл світлової енергії в кухоль розсіювання і судить про якість зображення.
Закон відображення світла. Якщо промені, розповсюджуючись в однорідному оптичному середовищі, зустрічають дзеркальні чи поліровані поверхні, то вони повністю або частково відбиваються відповідно до закону відображення, що формулюється в такий спосіб:
1. Промінь падаючий АО , нормаль до поверхні, що відбиває, у точці падіння NO і промінь відбитий ОА' лежать в одній площині (рис. 3).
2. Кут відображення ' по абсолютній величині дорівнює куту падіння .
3. Промінь падаючий і промінь відбитий обернені. Отже, якщо падаючий промінь направити по шляху А'О, то він відіб'ється в напрямку ОА. Принцип дії дзеркал і відбитих призм, використовуваних як деталі оптичних приладів, заснувань на законі відображення світла.
Закон переломлення світла. Промені світла при переході з одного прозорого середовища в інше на межі їх розділу не тільки частково відбиваються, але і переломлюються. Установлень Снел-лиусом і Декартом закон переломлення формулюється в такий спосіб:
Промінь падаючий АО, нормаль NO до поверхні розділу в точці падіння і переломлений промінь ОА' лежать в одній площині (рис. 4).
Добуток показника переломлення середовища на синус кута, утвореного променем з нормаллю, вважається постійним при переході променя з одного середовища в інше, тобто
n sin = n' sin '. (1)
3. Промінь падаючий і промінь переломлений обернені. У тих випадках, коли світло поширюється з більш щільного оптичного середовища в менш щільну (n' < n) при визначених значеннях кутів падіння m може відбутися явище повного внутрішнього відображення, що полягає в тому, що пучок не проходить в друге середовище, а відбивається від межі їх розділу (рис. 5). Граничне значення кута падіння m при якому промінь починає ковзати по границі розділу, визначають за формулою:
sin m = n'/n. (2)
Рисунок 4, 5- Переломлення променя на межі двох середовищ
Явище повного внутрішнього відображення широко використовується при створенні різних оптичних деталей, наприклад, відбивних призм, світловодів і т.п.
Варто помітити, що закон відображення може бути представлений як окремий випадок закону переломлення за умови n' = -n, тоді sin = -sin ' чи = -'.