
- •Тема 1. Вступ. Кінематика поступального руху.
- •Вступ. Кінематика поступального руху (2 год.)
- •1. Основні поняття механіки.
- •2. Радіус-вектор. Переміщення. Траєкторія. Пройдений шлях.
- •Тема 2. Кінематика обертального руху. Кінематика обертального руху (2 год.)
- •Основні поняття кінематики обертального руху.
- •Основні елементи кінематики рівномірного обертального руху
- •Обертального руху:
- •Обертальний рух:
- •Повне прискорення матеріальної точки, що виконує
- •Момент сили, що діє на і-ту матеріальну точку:
- •Тема 3. Динаміка поступального руху матеріальної точки.
- •Основні поняття динаміки поступального руху матеріальної точки і твердого тіла:
- •Перший закон Ньютона і поняття інерціальної системи відліку
- •Другий закон Ньютона
- •Третій закон Ньютона
- •Закон збереження імпульсу механічної системи
- •Теорема про рух центра мас механічної системи:
- •Тема 4. Закони збереження в механіці. Закони збереження енергії та імпульсу в механіці (2 год.)
- •Тема 5. Динаміка обертального руху. Динаміка обертального руху. (2 год.)
- •Рівняння динаміки обертального руху
- •4.8. Момент імпульсу і момент інерції
- •4.9. Момент сили і момент інерції
- •4.10. Момент інерції геометричного тіла
- •4.11. Теорема Штейнера. Закон додавання моментів інерції
- •4.12. Закон збереження моменту імпульсу
- •2). Приклади виконання закону збереження моменту імпульсу
- •4.13. Кінетична енергія тіла, що обертається
- •Тема 6.Механічний принцип відносності. Механічний принцип відносності. (2 год.)
- •Перетворення Галілея та механічний принцип відносності
- •Механічний рух. Система відліку. Відносність руху. Матеріальна точка. Траєкторія. Шлях і переміщення. Швидкість. Додавання швидкостей. Прискорення.
- •Рівномірний рух
- •Рівноприскорений рух
- •Рівномірний рух по колу. Період і частота. Лінійна і кутова швидкості. Доцентрове прискорення.
- •Перший закон Ньютона.Інерціальна система відліку. Принцип відносності Галілея.
- •Принцип відносності у класичній механиці (прнцип Галілея):
- •Принцип відносності Енштейна:
- •Маса. Сила. Додавання сил. Другий закон Ньютона.Третій закон Ньютона.
- •Гравітаційні сили. Закон всесвітнього тяжіння. Сила тяжіння. Рух тіла з початковою швидкістю під дією сили тяжіння.
- •Закон пружних деформацій (закон Гука)
- •Тема 7. Елементи релятивістської динаміки. Елементи релятивістської динаміки (2 год.)
- •Тема 8. Електростатичне поле. Електростатичне поле (2 год.)
- •Електростатичне поле
- •Гравітаційне поле та його характеристики. Зв’язок напруженості поля з його потенціалом:
- •Тема 9. Провідник в електричному полі. Провідник в електричному полі (2 год.)
- •Розподіл заряду в провіднику. Зв'язок між напруженістю поля в поверхні провідника й поверхневою густиною заряду
- •§2 Електроємність провідників. Конденсатори
- •3 Енергія електростатичного поля
- •3. Енергія зарядженого конденсатора.
- •Основні формули
- •Тема 10. Постійний електричний струм.
- •Постійний електричний струм (2 год)
- •1. Пості́йний струм, його джерела
- •2. Машини постійного струму
- •4. Закон Ома для замкнутого кола.
- •Тема 11. Електричний струм в рідинах і в газах Електричний струм в рідинах та газах (2 год)
- •Тема 12. Магнітне поле у вакуумі. Магнітне поле у вакуумі . (2 год.)
- •Потенціал електричного поля. Напруженість як градієнт потенціалу
- •Напряженность вихревого поля внутри свернутого соленоида
- •Токовый дипольный момент тороида
- •Тороид – основа самоорганизации движения материи
- •Основні формули
- •Тема 13.Явище електромагнітної індукції. Явище електромагнітної індукції (2 год.)
- •Тема 14. Магнітне поле в речовині. Магнітне поле в речовині (2 год.)
- •§1 Феромагнетики
- •§2 Магнітні властивості атомів
- •§3 Діамагнетизм
- •§4 Парамагнетизм
- •Рівняння електродинаміки в диференціальній формі
- •Сгсг ]у вакуумі
- •У середовищі
- •Пояснення
- •[Ред.]Історична довідка
- •Неінваріантність відносно перетворень Галілея
- •Тема 15. Коливання та хвилі Коливання та хвилі (2 год)
- •Коливальний рух. Математичний та пружинний маятники
- •Тема 16. Складання коливань Складання коливань (2 год)
- •Тема 17. Загасаючі коливання Загасаючі коливання (2 год)
- •Тема 18. Вимушені механічні та електромагнітні коливання Вимушені механічні та електромагнітні коливання (2 год)
- •Тема 19. Хвилі Хвилі (2 год)
- •Утворення хвиль в пружному середовищі. Поздовжні і поперечні хвилі. Рівняння біжучої хвилі
- •Тема 20. Фазова і групова швидкість хвилі. Вектор Пойгтінга. Фазова і групова швидкість хвилі. Вектор Пойгтінга (2 год)
- •Тема 21. Електромагнітні хвилі Електромагнітні хвилі (2 год)
- •Сгсг у вакуумі
- •У середовищі
- •Пояснення
- •Історична довідка
- •Неінваріантність відносно перетворень Галілея
- •Енергія електромагнітної хвилі. Густина потоку випромінювання
- •Експеримент:
- •Класифікація радіохвиль по видах, довжині, частотах. Галузі застосування радіохвиль
- •Розповсюдження радіохвиль
- •Закріплення матеріалу
- •Тема 22. Геометрична оптика Геометрична оптика (2 год.)
- •Тема 23. Хвильова оптика. Інтерференція світла. Хвильова оптика. Інтерференція світла (2 год.)
- •Тема 24. Дифракція світла
- •Дифракція світла (2 год.)
- •Принцип Гюйгенса-Френеля
- •Дифракция света
- •4.3. Дифракция Френеля на круглом отверстии и диске
- •4.3.1. Дифракция Френеля на круглом отверстии
- •Тема 24. Ди Дифракционная решетка
- •4.8. Понятие о голографии
- •Тема 25. Поляризація світла.
- •Поляризація світла (2 год.)
- •Поляризация при отражении и преломлении Закон Брюстера
- •Подвійне променезаломлення
- •Тема 26. Квантова оптика
- •Квантова оптика (2 год.)
- •Теплове випромінювання та його рівноважність
- •18.2. Закони теплового випромінювання
- •18.2. 1. Закон Кірхгофа.
- •18.2. 2. Закон Cтефана-Больцмана.
- •18.2. 3. Закон випромінювання Віна.
- •18.2. 4. Закон зміщення Віна.
- •18.2. 5. Формула Релея - Джінса
- •18.2. 6. Гіпотеза та формула Планка
- •18.3. Розрахунок сталих Стефана - Больцмана та Віна за допомогою формули п ланка
- •Тема 27. Елементи квантової механіки.
- •Елементи квантової механіки (2 год.)
- •Співвідношення невизначеностей як прояв корпускулярно-хвильового дуалізму властивостей матерії. Обмеженість механічного детермінізму
- •Тема 28. Рівняння Шредінгера
- •Рівняння Шредінгера (2 год.)
- •Незбуреному стану частинки відповідає енергія
- •Тема 29. Фізика атомів і атомних ядер.
- •Фізика атомів і атомних ядер (2 год)
- •Тема 30. Періодична система елементів.
- •Періодична система елементів (2 год)
- •Тема 31. Атомне ядро.
- •Атомне ядро (2 год)
- •Радіоактивність. Основний закон радіоактивного перетворення атомних ядер
- •20.11. Реакції поділу урану та ядерна енергетика
- •20.12. Реакції синтезу ядер та термоядерна енергетика
- •Реакція синтезу атомних ядер. Проблема керованих термоядерних реакцій
- •Тема 32. Основи статистичної фізики.
- •Основи статистичної фізики (2 год.)
- •Статистична фізика
- •Процеси нерівноважної термодинаміки
- •Основні поняття термодинаміки
- •Термодинамічні потенціали
- •Спряжені термодинамічні змінні
- •Диференціали від термодинамічних потенціалів
- •Фазові перетворення
- •Абсолютна шкала температур
- •Рівноважне випромінювання
- •Нерівноважна термодинаміка
- •Лінійна нерівноважна термодинаміка
- •Відкриті системи далекі від рівноваги
- •Тема 33. Функція розподілу.
- •Функція розподілу (2 год.)
- •Тема 34. Кінетична теорія газів.
- •Кінетична теорія газів (2 год.)
- •Основне рівняння молекулярно-кінетичної теорії
- •Середня кінетична енергія молекул. Молекулярно-кінетичне трактування абсолютної температури
- •Тема 35. Основи термодинаміки.
- •Основи термодинаміки (2 год.)
- •1 Та 2 закони термодинаміки
- •Цикл карно. Ентропія. Реальні гази Основні формули
- •Тема 36. Елементи фізики твердого тіла.
- •Основи фізики твердого тіла (2 год.)
- •Енергія коливань і теплоємність кристалічної решітки
- •4.1. Модель Ейнштейна
- •4.2. Модель Дебая
- •Тема 37. Поняття про зонну теорію твердих тіл.
- •Поняття про зонну теорію твердих тіл (2 год.)
- •Тема 38. Власна провідність напівпровідників.
- •Власна провідність напівпровідників (2 год.)
- •Тема 39. Домішкова провідність напівпровідників.
- •Домішкова провідність напівпровідників (2 год.)
- •1. Механізм електричної провідності напівпровідників
- •1.2. Енергетичні зони
- •1.3. Рухливість
- •2. Власна щільність
- •3. Види напівпровідників
- •3.1. За характером провідності
- •3.1.1. Власна провідність
- •3.1.2. Домішкова провідність
- •3.2. По виду провідності
- •3.2.1. Електронні напівпровідники ( n-типу)
- •3.2.2. Діркові напівпровідники ( р-типу)
- •Тема 40. Елементи квантової теорії електропровідності металів. Елементи квантової теорії електропровідності металів (2 год)
- •Ефект Пельтьє
- •Відкриття ефекту Пельтьє
- •Пояснення ефекту Пельтьє
- •Застосування ефекту Пельтьє Модулі Пельтьє
- •Тема 41. Випрямлення на контакті метал-напівпровідн Випрямлення на контакті метал-напівпровідник (2 год)
- •Эффект Шоттки
- •Тема 42. Напівпровідникові діоди та транзистори.
- •Напівпровідникові діоди та транзистори (2 год)
- •Коливань решітки, згідно квантової механіки, можна зіставити квазічастинки - фонони. Кожному коливан Напівпровідниковий діод
- •4.2. Транзистор
- •5. Типи напівпровідників в періодичній системі елементів
- •6. Фізичні властивості і застосування
Потенціал електричного поля. Напруженість як градієнт потенціалу
Розглянемо
поле, яке створюється нерухомим точковим
зарядом q у
вакуумі (рис. 73). Нехай в електростатичному
полі заряду q вздовж
довільної траекторії з точки 1 в
точку 2 переміщується
інший точковий заряд
під
дією сили. Робота сили
на
елементарному переміщенні
дорівнює:
Робота при переміщенні заряду з точки 1 в точку 2 дорівнює:
Ця робота не залежить від траєкторії переміщення, а визначається лише початковим (1) і кінцевим (2) положенням заряду. Отже, електростатичне поле точкового зарядує потенціальним, а електростатичні сили – консервативними.
Оскільки робота консервативних сил виконується за рахунок зменшення по- тенціальної енергії, то
Отже, потенціальна енергія заряду в полі заряду q у вакуумі дорівнює:
Домовимось
вважати потенціальну енергію
заряду
такою,
що дорівнює нулю на нескінченно великій
відстані від q.
При r
і
.
Тому потенціальна енергія заряду
,
що перебуває на відстані r від
точкового заряду q,
дорівнює
.
Якщо заряди та q однойменні, то потенціальна енергія їхньої взаємодії (відштовхування) додатна і зростає при зближенні цих зарядів (рис. 74). У випадку взаємного притягання різнойменних зарядів потенціальна енергія їхньої взаємодії від’ємна і зменшується при наближенні одного із зарядів до іншого.
Потенціальна
енергія
заряду
що
перебуває в полі точкових зарядів
,
дорівнює сумі його потенціальних
енергій
у
полях, що створюються кожним зарядом
зокрема:
,
де
відстань
від заряду
до
заряду
.
Величина
,
однакова для всіх зарядів в даній точці
поля, називається
потенціалом поля.
Потенціалом
будь-якої
точки електростатичного поля називають
фізичну величину, яка числово дорівнює
потенціальній енергії одиничного
позитивного заряду, поміщеного в цю
точку.
Одиниця
потенціалу – вольт.
–
це потенціал такої точки поля, в якій
заряд в
має
потенціальну енергію в
.
Потенціал поля, створеного одним точковим зарядом q у вакуумі, дорівнює:
.
Роботу, яку виконують електроста- тичні сили при переміщенні заряду від точки 1 до точки 2 електростатичного поля, можна записати так:
,
де
та
–
потенціали поля в точках 1 та 2.
Якщо
заряд
з
точки з потенціалом
віддаляється
в нескінченність
,
тоді робота сили поля буде дорівнювати
.
Звідси
.
Потенціал даної точки електростатичного поля – це така фізична величина, яка числово дорівнює роботі, яку виконують зовнішні сили (проти сил електростатичного поля) при переміщенні одиничного позитивного заряду з нескінченності в дану точку поля.
Потенціал поля, яке створюється системою зарядів, дорівнює алгебраїчній сумі потенціалів, створених кожним із зарядів зокрема:
.
Нехай
маємо заряд q в
електростатичному полі. Переміщаючи
його в просторі, електричне поле виконає
деяку роботу (розглядаємо для простоти
переміщення вздовж осі
).
Величина цієї роботи визначається за
формулою
.
З
іншого боку, робота при переміщенні
заряду q в
електростатичному полі виражається
через потенціали цього поля
.
Отже, елементарна робота становитиме:
.
Тоді, прирівнявши елементарні роботи, отримаємо:
,
.
Знак “–“ означає, що під дією сил електричного поля заряд переміщується в бік зменшення потенціалу.
Аналогічні
міркування можна поширити і на напрямки
переміщень вздовж осей
і
.
;
.
Отже,
ми знайшли
та
–
компоненти вектора напруженості E:
.
Це рівняння можна переписати так:
.
У векторному аналізі градієнтом скалярної величини називається така векторна величина, для якої справедливий запис:
.
Отже,
.
Знак
"–" вказує на те, що вектор
напруженості
поля напрямлений в бік найшвидшого
зменшення потенціалу. Напруженість в
якій-небудь точці електростатичного
поля дорівнює градієнту потенціалу в
цій точці, взятому з оберненим знаком.
Знаючи потенціал в кожній точці поля, за формулою можемо обчислити напруженість в кожній точці поля. Можна розв'язати і обернену задачу, тобто знаючи напруженість поля в кожній точці поля, можна знайти різницю потенціалів між двома довільними точками.
Робота із переміщення заряду з точки 1 в 2 дорівнює:
,
але, з іншого боку,
.
Звідси
.
Інтеграл можна брати довільним шляхом, який з'єднує точки 1 та 2, оскільки електростатичне поле є консервативне.
При
обході по замкненому контуру заряд
потрапляє в кінцеву точку поля, яка
збігається з початковою і
,
отже
.
Цей інтеграл називають циркуляцією вектора напруженості вздовж замкненого контуру.
Циркуляція вектора напруженості електростатичного поля вздовж замкненого контуру дорівнює нулю.
Векторне поле називається потенціальним, якщо циркуляція вектора по довільному замкненому контуру дорівнює нулю.
Геометричне місце точок з однаковим потенціалом називається еквіпотенціальною поверхнею.
Тороид представляет собой свернутый в тор соленоид, ось симметрии которого имеет форму окружности. Криволинейность оси симметрии тороида – это то, что прежде всего отличает тороид от бесконечно длинного соленоида. Как и в соленоиде, в любой точке каждого витка тороиде имеется контурная составляющая тока Icn , описанная на странице, посвященной соленоиду, и создающая вихревое поле внутри свернутого соленоида и токовый дипольный заряд (дипольный момент). Напряженность этого вихревого поля пропорциональна числу контуров (числу витков). Имеется также и осевая составляющая тока Il , касательная к свернутой в окружность оси симметрии соленоида.