- •Серия «учебники и учебные пособия» Эрл д. Гейтс введение в электронику
- •Раздел 1 за 34
- •Глава 2 36
- •Техника безопасности
- •Меры предосторожности при работе с высоким напряжением
- •Раздел 1.
- •Глава 1. Основы электричества
- •3. Вопросы
- •4. Напряжение
- •4. Вопросы
- •5. Сопротивление
- •5. Вопросы
- •Глава 1. Самопроверка
- •Глава 2. Ток
- •1. Электрический заряд
- •V у заряд
- •1. Вопросы
- •2. Протекание тока
- •Шарики от л -
- •Пинг-понга V
- •Электронов.
- •3. Степенное представление чисел
- •Раздел 1 за
- •Раздел 1 за 34
- •Глава 2 36
- •Глава 2
- •Глава 2. Самопроверка
- •Глава 3. Напряжение
- •2. Элементы и батареи
- •4. Приложенное напряжение и падение напряжения
- •4. Вопросы
- •5. Заземление как уровень отсчета напряжения
- •5. Вопросы
- •Глава 3. Самопроверка
- •Глава 4. Сопротивление
- •1. Сопротивления
- •6. Вопрос
- •Глава 4. Самопроверка
- •2. Вопросы
- •93 Глава 5 . Шь
- •Глава 5. Самопроверка
- •Глава 6. Электрические измерения - измерительные приборы
- •6. Отсчет показаний измерительного прибора
- •7. Вопросы
- •Глава 6. Самопроверка
- •1. Вопросы
- •2. Применение мощности (анализ цепей)
- •Раздел 1 за 34
- •Глава 2 36
- •2. Вопросы
- •Раздел 1 за 34
- •Глава 2 36
- •Глава 7. Самопроверка
- •2. Параллельные цепи
- •3. Вопрос
- •Раздел 1 за 34
- •Глава 2 36
- •Глава 8. Самопроверка
- •1. Вопросы
- •2. Вопросы
- •3. Вопросы
- •4. Применения магнетизма и электромагнетизма
- •157 Глава 9
- •4. Вопросы
- •Глава 9. Самопроверка
- •1. Вопросы
- •2. Катушки индуктивности
- •2. Вопросы
- •3. Постоянная времени l/r
- •3. Вопросы
- •Глава 10. Самопроверка
- •1. Вопросы
- •2. Конденсаторы
- •2. Вопросы
- •3. Вопросы
- •Глава 11. Самопроверка
- •Специальность — электрик
- •1. Получение переменного тока
- •Раздел 1 за 34
- •Глава 2 36
- •3. Вопросы
- •Глава 12. Самопроверка
- •1. Вопросы
- •2. Осциллографы
- •2. Вопросы
- •3. Частотомеры
- •3. Вопросы
- •Глава 13. Самопроверка
- •Раздел 1 за 34
- •Глава 2 36
- •3. Параллельные цепи переменного тока
- •4. Вопросы
- •Глава 14. Самопроверка
- •Раздел 1 за 34
- •Глава 2 36
- •2. Вопросы
- •Глава 15. Самопроверка
- •180 Градусов.
- •1. Вопросы
- •2. Вопросы
- •Глава 16. Самопроверка
- •1. Реактивное сопротивление
- •X 1114 Ом (индуктивное).
- •1. Вопросы
- •2. Вопросы
- •4. Вопрос
- •Глава 17. Самопроверка
- •Глава 18. Трансформаторы
- •1. Вопросы
- •3. Коэффициент трансформации
- •3. Вопросы
- •4. Вопросы
- •Глава 18. Самопроверка
- •Специальность — техник по электронике
- •Глава 19. Основы полупроводников
- •1. Полупроводниковые свойства германия и кремния
- •14 Электронов на орбитах
- •1. Вопросы
- •2. Вопросы
- •3. Проводимость в легированном германии и кремнии
- •3. Вопросы
- •Глава 19. Самопроверка
- •Глава 20. Диоды на основе р-n перехода
- •1. Вопросы
- •2. Смещение диода
- •3. Вопросы
- •5. Вопросы
- •Глава 20. Самопроверка
- •Глава 2 1 Як _________
- •Глава 21. Самопроверка
- •2. Вопросы
- •3. Основы работы транзистора
- •Щенный п-р-п транзистор. Щенный р-п-р транзистор.
- •4. Проверка транзисторов
- •5. Замена транзисторов
- •5. Вопросы
- •Глава 22. Самопроверка
- •1. Вопросы
- •2. Полевые транзисторы с изолированным затвором обедненного типа
- •I Подложка (п)
- •4. Вопросы
- •5. Проверка полевых транзисторов
- •5. Вопросы
- •Раздел 3
- •Глава 23. Самопроверка
- •120 Вольт
- •1. Вопросы
- •I, Управляющий электрод Рис. 24-10. Упрощенная схема конструкции триака.
- •1 120 В диак триак
- •Глава 24. Самопроверка
- •1. Введение в интегральные микросхемы
- •Шлифовка и полировка Установка для эпитаксиального
- •3. Корпуса интегральных микросхем
- •Глава 25. Самопроверка
- •3. Светоизлучающие устройства
- •Глава 26. Самопроверка
- •2. Вопросы
- •4. Вопросы
- •5. Умножители напряжения
- •5. Вопросы
- •6. Устройства защиты цепей
- •Глава 27. Самопроверка
- •Глава 28 Як
- •6. Вопросы
- •I j частоты
- •7. Вопросы
- •Выход Рис. 28-42. Блок-схема операционного усилителя.
- •8. Вопросы
- •Глава 28. Самопроверка
- •1. Основы генераторов
- •1. Вопросы
- •2. Генераторы синусоидальных колебаний
- •2. Вопросы
- •3. Генераторы несинусоидальных колебаний
- •3. Вопросы
- •Глава 29. Самопроверка
- •Глава 30. Цепи формирования сигнала
- •2. Цепи формирования сигнала
- •Диодныи ограничитель со смещением.
- •Перемене полярности диода и источника смещения в смещенном последовательном диодном ограничителе.
- •2. Вопросы
- •3. Цепи специального назначения
- •Глава 30. Самопроверка
- •Цифровые электронные цепи
- •2. Преобразование двоичных чисел в десятичные и наоборот
- •Раздел 1 за 34
- •Глава 2 36
- •2. Вопросы
- •Раздел 1 за 34
- •Глава 2 36
- •Раздел 1 за 34
- •Глава 2 36
- •3. Вопросы
- •Раздел 1 за 34
- •Глава 2 36
- •Глава 31. Самопроверка
- •3. Вопросы
- •4. Элемент не-и
- •4. Вопросы
- •5. Элемент не-или
- •5. Вопросы
- •6. Элементы исключающее или и исключающее не-или
- •6. Вопросы
- •Гпава 32. Самопроверка
- •Глава 33. Простые логические цепи
- •1. Вопросы
- •Глава 33. Самопроверка
- •Глава 34. Последовательные логические цепи
- •1. Триггеры
- •2. Счетчики
- •2. Вопросы
- •0 0 0 0 Потеря данных
- •3. Вопросы
- •Раздел 1 за 34
- •Глава 2 36
- •Глава 34. Самопроверка
- •4. Вопросы
- •Глава 35. Самопроверка
- •1. Основы устройства компьютера
- •В память или ввод/вывод
- •Выбор ячейки памяти
- •1. Вопросы
- •2. Архитектура микропроцессора
- •Дешифратор команд
- •Манд • Указатель
- •2. Вопросы
- •Глава 36. Самопроверка
- •IPjNlPj”
- •Глава 1. Основы электричества
- •Глава 3. Напряжение
- •Глава 4. Сопротивление
- •Глава 5. Закон ома
- •Глава 6. Электрические измерения — измерительные приборы
- •Глава 7. Мощность
- •Глава 8. Цепи постоянного тока
- •Глава 9. Магнетизм
- •Глава 10. Индуктивность
- •Глава 11. Емкость
- •Глава 12. Переменный ток
- •Глава 13. Измерения переменного тока
- •Глава 14. Резистивные цепи переменного тока
- •Глава 15. Емкостные цепи
- •Глава 1c. Индуктивные цепи переменного тока
- •Глава 17. Резонансные цепи
- •Глава 18. Трансформаторы
- •Глава 19. Основы полупроводников
- •Глава 20. Диоды на основе р-п-перехода
- •Глава 21. Стабилитроны
- •Глава 22. Биполярные транзисторы
- •Глава 23. Полевые транзисторы
- •Глава 24. Тиристоры
- •Глава 25. Интегральные микросхемы
- •Глава 26. Оптоэлектронные устройства
- •Глава 27. Источники питания
- •Глава 28. Усилители
- •Глава 29. Генераторы
- •Глава 30. Цепи формирования сигнала
- •Глава 31. Двоичная система счисления
- •Глава 32. Основные логические элементы
- •Глава 33. Простые логические цепи
- •Глава 34. Последовательные логические цепи
- •Глава 35. Комбинационные логические схемы
- •Глава 36. Основы микрокомпьютеров
- •344007, Г. Ростов-на-Дону, пер. Соборный, 17 Тел.: (8632) 62-51-94
- •3. Вопросы
- •5. Вопросы
- •6. Вопросы
- •7. Мультиметры
- •1. Вопросы
- •2. Вопросы
- •2. Вопросы
- •2. Последовательные цепи переменного тока
- •1. Вопросы
- •2. Вопросы
- •4. Меры предосторожности при работе с моп транзисторами
- •2. Вопросы
- •3. Двунаправленные диодные тиристоры
- •3. Вопросы
- •4. Проверка тиристоров
- •4. Вопросы
- •1. Вопросы
- •3. Вопросы
- •1. Вопросы
- •2. Светочувствительные устройства
- •3. Вопросы
- •3. Вопросы
- •4. Регуляторы и стабилизаторы напряжения
- •1. Вопросы
- •3. Вопросы
- •4. Арифметические схемы Сумматор
- •I3. Вопросы
- •4. Цепи rlc
Выход Рис. 28-42. Блок-схема операционного усилителя.
ко на разность входных сигналов. Кроме того, дифференциальный усилитель усиливает сигнал, пропорциональный разности входных напряжений, и не реагирует на одинаковые сигналы на обоих входах. Это называется ослаблением синфазного сигнала. Ослабление синфазного сигнала полезно при измерении слабых сигналов на фоне шума с частотой 60 герц. Шум с частотой 60 герц является общим для обоих входов и поэтому он ослабляется, а операционный усилитель усиливает только малую разность сигналов на обоих входах. Амплитудно-частотная характеристика дифференциального усилителя обеспечивает усиление от области низких частот до постоянного тока. Это означает, что дифференциальный усилитель может усиливать не только низкочастотные сигналы переменного тока, но и сигналы постоянного тока.
Второй каскад — это усилитель напряжения с высоким коэффициентом усиления. Этот каскад состоит из нескольких пар транзисторов, соединенных по схеме Дарлингтона, достигает усиления по напряжению в 200000 раз и более, обеспечивая большую часть усиления операционного усилителя.
Последний каскад — это выходной усилитель. Обычно это эмиттерный повторитель на комплементарных транзисторах. Он используется для того, чтобы операционный усилитель имел низкий выходной импеданс. Операционный
усилитель может обеспечить несколько миллиампер тока нагрузки.
Операционные усилители рассчитаны на питание от двухполярного источника напряжения от ±5 до ±15 вольт. Положительный вывод источника питания должен обеспечивать от +5 до +15 вольт по отношению к земле, а отрицательный от -5 до -15 вольт по отношению к земле. Это позволяет выходному напряжению изменяться в сторону положительных и отрицательных значений по отношению к земле. Однако в некоторых случаях операционные усилители могут работать и от однополярного источника питания.
Принципиальная схема типичного операционного усилителя изображена на рис. 28-43. Изображенный усилитель называется LM741 (отечественный аналог К140УД7). Этот операционный усилитель не требует частотной коррекции, защищен от короткого замыкания, не имеет проблем с запиранием. Хорошие эксплуатационные качества при низкой цене обеспечивают его широкое использование. Устройство, содержащее в одном корпусе два операционных усилителя LM741, называется LM747 (наш аналог КР140УД20). Благодаря отсутствию конденсаторов связи эти операционные усилители могут усиливать сигналы переменного и постоянного токов.
Нормальный режим работы операционного усилителя — это режим работы с обратной связью. В нем используется отрицательная обратная связь, что уменьшает общее усиление операционного усилителя, но обеспечивает лучшую стабильность.
При работе операционного усилителя с обратной связью, выходной сигнал подается на один из входов в качестве сигнала обратной связи. Этот сигнал обратной связи противодействует входному сигналу, так как находится в проти- вофазе. Существуют две основные цепи с обратной связью: инвертирующая и неинвертирующая. Инвертирующая конфигурация более популярна.
На рис. 28-44 изображен операционный усилитель с инвертирующей обратной связью: входной сигнал подается на
I National Operational Amplifiers/Buffers
I Semiconductor
LM741/LM741A/LM741C/LM741E Operational Amplifier General Description
The LM741 series are general purpose operation*! amplifiers which feature improved performance over industry standards like the LM709 They »re direct plug m replacements for the 709C LM201 MC1439 and 748 in most applications
The amplifiers offer many features which make their application nearly foolproof overload pro tection on the input and output no latch up when the common mode range is exceeded as well as freedom from oscillation»
The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/ LM741E have their performance guaranteed over a 0°C to +70*C temperature range instead of -55°C to +125вС
Schematic and Connection Diagrams (Top Views)
Quel
In LineP»cfc»9«
Order
Number LM741CN 14 See NS Peckeee N14A Order Number IM741J 14
LM741AJ 14 or LM7410 14 SeeNS PeckeveJUA
Order
Number LM741H, LM741AH IM741CH or LM741EH Sm
NS Packae* HOSC
Order
Number LM741CN or LM741EN See NS Рккце
NOSB
Order Number LM741CJ See NS Peckige J08A
инвертирующий вход (-) через резистор Rr Обратная связь обеспечивается с помощью резистора R2. Величина сигнала на инвертирующем входе определяется как входным, так и выходным напряжением.
Знак минус указывает на то, что выходной сигнал отрицателен, когда входной сигнал положителен. Знак плюс указывает на то, что выходной сигнал положителен, когда входной сигнал отрицателен. Выходной сигнал сдвинут по фазе на 180 градусов по отношению ко входному. В зависимости от отношения резисторов R2 и Rx усиление инвертирующего усилителя может быть меньше, равно или больше 1. Когда усиление равно 1, его называют усилителем с единичным усилением, и используют для инвертирования полярности входного сигнала.
На рис. 28-45 изображен операционный усилитель с неинвертирующей обратной связью: выходной сигнал находится в фазе со входным. Входной сигнал подается на неинвертирующий вход операционного усилителя. Выходное напряжение делится с помощью резисторов R2 и Rx для того, чтобы подать напряжение обратной связи на инвертирующий (-) вход. Усиление по напряжению по неинвертирующему входу всегда больше 1.
Рис.
28-44. Операционный усилитель в качестве
инвертирующего усилителя.
Рис.
28-45. Операционный усилитель в качестве
неинвертирующего усилителя.
ных данных — это усиление по постоянному току. При увеличении частоты усиление уменьшается. Без использования методов увеличения полосы пропускания, операционный усилитель хорош только для усиления сигналов постоянного тока. Для расширения полосы пропускания используется обратная связь, уменьшающая усиление. Насколько уменьшается усиление, настолько увеличивается полоса пропускания. С помощью этого способа полоса пропускания операционного усилителя 741 может быть увеличена до 1 мегагерца.
Операционные усилители применяются для сравнения, инвертирования или неинвертирования сигналов, они также могут использоваться для сложения сигналов, как показано на рис. 28-46. Такой усилитель называется суммирующим усилителем. Отрицательная обратная связь удерживает потенциал инвертирующего входа близким к потенциалу земли. Следовательно, все входные сигналы электрически изолированы друг от друга. На выходе усилителя получается инвертированная сумма входных сигналов.
В суммирующем усилителе резистор, соединяющий неинвертирующий вход с землей, выбран равным полному сопротивлению параллельйо включенных входному сопротивлению и сопротивлению обратной связи. Если сопротивление обратной связи увеличить, то цепь может обеспечить и усиление. Если используются различные входные сопротивления, сигналы могут быть сложены с различным усилением.
Суммирующие усилители используются при смешивании сигналов звуковой частоты. В качестве входных сопротивлений используются потенциометры для регулирования уровня каждого из входных сигналов.
Рис.
28-46. Операционный усилитель в качестве
суммирующего усилителя.
Операционные усилители также могут использоваться в качестве активных фильтров. Фильтры, использующие резисторы, катушки индуктивности и конденсаторы, называются пассивными. Активные фильтры — это безын- дуктивные фильтры, использующие интегральные микросхемы. Преимущество активных фильтров в отсутствии катушек индуктивности, имеющих большие размеры.
При использовании операционных усилителей в качестве активных фильтров недостатком является то, что они требуют источника питания, могут создавать шум и превращаться в генератор (возбуждаться) вследствие температурного дрейфа или старения компонентов.
Рис.
28-47. Операционный усилитель в качестве
фильтра верхних частот.
Рис.
28-48. Операционный усилитель в качестве
фильтра нижних частот.
Рис.
28-50. Операционный усилитель в качестве
разностного усилителя.
Разностный усилитель вычитает один сигнал из другого. На рис. 28-50 изображен стандартный разностный усилитель. Эта цепь называется вычитающим устройством, поскольку она вычитает значение Е2 из значения Ег