- •Часть II
- •Раздел IV. Химическая кинетика и катализ
- •Двусторонние и односторонние (обратимые и необратимые) реакции
- •Кинетическая классификация реакций. Молекулярность и порядок реакций
- •Необратимые реакции первого порядка
- •Необратимые реакции второго порядка
- •Необратимые реакции n-го порядка
- •Реакции нулевого порядка
- •Сложные реакции: обратимые, параллельные, последовательные
- •Обратимые реакции первого порядка
- •В момент равновесия скорости прямой и обратной реакций одинаковы:
- •Обратимые реакции второго порядка
- •В общем виде
- •Параллельные реакции
- •Последовательные реакции
- •Методы определения порядка реакций
- •Влияние температуры на скорость реакции
- •Применение теории столкновений к бимолекулярным реакциям. Расчет константы скорости
- •Типы бимолекулярных реакций
- •Теория активного комплекса (переходного состояния)
- •Обрыв цепи
- •Длина цепи и ветви
- •Кинетика неразветвленных цепных реакций
- •Разветвленные цепные реакции
- •Тепловой взрыв
- •Сопряженные реакции
- •Основные законы фотохимии. Квантовый выход
- •Основные типы фотохимических процессов
- •Зависимость скорости фотохимических реакций от температуры
- •Мономолекулярные и тримолекулярные реакции. Реакции в растворах Мономолекулярные реакции в газовой фазе
- •Тримолекулярные реакции в газовой фазе
- •Реакции в растворах
- •Методы изучения кинетики сложных реакций
- •Общие сведения о катализе. Гомогенный катализ. Катализ кислотами и основаниями Общие сведения о катализе
- •Гомогенные каталитические реакции
- •Общая схема расчета кинетики гомогенных каталитических реакций
- •Катализ кислотами и основаниями
- •Активационный процесс в гетерогенных реакциях
- •Активированная адсорбция
- •Кинетика гетерогенных каталитических реакций
- •Истинная и кажущаяся энергия активации гетерогенных химических реакций
- •Теория активных центров в гетерогенном катализе Отравление катализатора
- •Роль поверхности и пористость катализатора
- •Связь между энергией активации и предэкспоненциальным множителем
- •Недостаточность модели однородной поверхности в катализе и адсорбции
- •Мультиплетная теория катализа
- •Теория активных ансамблей
- •Электронные представления в гетерогенном катализе
- •Раздел V. Электрохимия
- •Предмет электрохимии
- •Проводники первого и второго рода
- •Электрохимические реакции
- •Законы электролиза (законы Фарадея)
- •Теория электролитической диссоциации Аррениуса
- •Недостатки теории Аррениуса
- •Причины диссоциации. Сольватация и гидратация Теплоты сольватации (гидратации)
- •Экспериментальные теплоты гидратации ионов
- •Модельные методы расчета энергии гидратации ионов
- •Энтропия сольватации ионов
- •Состояние ионов в растворах. Число сольватации
- •Распределение ионов в растворе
- •Теория электролитов Дебая и Гюккеля
- •Сопоставление теории Дебая – Гюккеля с опытом
- •Дальнейшее развитие теории
- •Удельная и эквивалентная электропроводность
- •Влияние природы растворителя на электропроводность
- •Подвижность ионов
- •Подвижность ионов гидроксония и гидроксила
- •Связь между подвижностью ионов и их концентрацией
- •Зависимость подвижности ионов от температуры
- •Числа переноса ионов
- •Диссоциация воды. РН растворов
- •Диссоциация слабых электролитов
- •Гидролиз солей
- •Буферные растворы
- •Амфотерные электролиты
- •Произведение растворимости
- •Гальванические элементы. Эдс
- •Термодинамика гальванического элемента
- •Измерение эдс
- •Строение границы электрод-раствор. Двойной электрический слой
- •Теория конденсированного двойного слоя Гельмгольца
- •Теория диффузного двойного слоя Гуи – Чапмана
- •Адсорбционная теория Штерна
- •Дальнейшее развитие теории строения дэс
- •Электродный потенциал
- •Стандартный электродный потенциал
- •Классификация электродов
- •Электроды первого рода
- •Электроды второго рода
- •Газовые электроды
- •Амальгамные электроды
- •Окислительно-восстановительные, или редокси-электроды
- •Физические цепи
- •Концентрационные цепи
- •Химические цепи
- •Аккумуляторы
- •Определение коэффициентов активности электролитов
- •Определение рН раствора
- •Произведение растворимости
- •Потенциометрия
- •Ионоселективные электроды
- •Кинетика электрохимических процессов
- •Концентрационная поляризация
- •Электрохимическое перенапряжение
- •Напряжение разложения
- •Закономерности перенапряжения выделения водорода
- •1. Влияние плотности тока
- •2. Влияние природы металла
- •3. Влияние природы и состава раствора
- •4. Влияние температуры и некоторых других факторов
- •Теории водородного перенапряжения
- •Теория замедленной рекомбинации
- •Теория замедленного разряда
- •Электроосаждение металлов
- •Анодное растворение и пассивность металлов
- •Коррозия металлов. Борьба с коррозией
- •Кондуктометрия
- •Электроанализ и кулонометрия
- •Вольтамперометрические методы
- •Полярография. Нестационарная вольтамперометрия Классическая полярография
- •Следовательно, изменение приложенной извне разности потенциалов при выполнении измерений указанным образом равно изменению потенциала капельного электрода.
- •Теория метода
- •Твердые электроды в полярографии
- •Разновидности полярографических методов
- •Импульсная полярография
- •Осциллографическая полярография
- •Основные формулы и законы Формальная кинетика
- •Зависимость скорости реакции от температуры
- •Применение теории активных столкновений и теории активного комплекса к расчету констант скоростей реакций
- •Фотохимия
- •Ионное равновесие в растворах электролитов
- •Неравновесные явления в растворах электролитов: миграция и диффузия
- •Термодинамика гальванического элемента
- •Классификация электродов
- •Классификация электрохимических цепей
- •Аккумуляторы
- •Законы электролиза
- •Неравновесные электродные процессы
- •Оглавление
- •Физическая химия Курс лекций
- •Часть 2
- •Химическая кинетика, электрохимия
Диссоциация воды. РН растворов
Диссоциация воды протекает по схеме
Н2О Н+ + ОН–
Константу диссоциации можно выразить как
=
.
Так
как степень диссоциации воды очень
мала, то
можно считать постоянной и ввести ее в
значение константы диссоциации
.
При
Т = const
Kw
= const
и не зависит от концентрации ионов Н+
и ОН–
; Kw
называется ионным
произведением воды.
При 25оС
Kw
= 1,00810–14
. В нейтральном
растворе
= 10–7
моль/л.
рН
=
lg
водородный
показатель,
введенный Зеренсеном (1909). рН = 7 отвечает
нейтральному раствору только при 25оС.
Kw
очень
сильно зависит от температуры
(увеличивается в 100 раз в интервале 20 –
100оС),
то есть с ростом Т концентрация
образующихся ионов Н+
и ОН–
будет увеличиваться, и при t
25оС
рН = 7 будет соответствовать кислому
раствору, а при t
25оС
щелочному. Ниже приведены значения рKw
= – lg
Kw
при различных температурах.
Таблица 4
Зависимость ионного произведения воды от температуры
t , оС |
0 |
10 |
20 |
25 |
30 |
40 |
50 |
60 |
рKw |
14,944 |
14,535 |
14,167 |
13,997 |
13,833 |
13,535 |
13,262 |
13,017 |
Кислые растворы – такие, в которых Н+ОН–; щелочные такие, где ОН–Н+. Так как мерой кислотности служит Н+, то в ряду кислот более сильной будет та, у которой при одинаковой аналитической концентрации Н+ выше (то есть больше степень диссоциации).
Из температурной зависимости рKw , воспользовавшись уравнением изохоры реакции, можно вычислить тепловой эффект диссоциации воды. При 20оС он равен 57,3 кДж/моль, что практически совпадает по абсолютной величине с экспериментально найденной теплотой нейтрализации сильной кислоты сильным основанием в водных растворах, поскольку протекающая при этом реакция обратна процессу диссоциации воды.
Следует помнить, что величины концентраций ионов Н+ в выражении для рН можно использовать взамен активностей только в случае достаточно разбавленных растворов.
Диссоциация слабых электролитов
При диссоциации слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами. Рассмотрим простейший пример, когда молекула распадается только на два иона:
СН3СООН + Н2О СН3СОО– + Н3О+
На основании закона действующих масс напишем выражение для константы равновесия Ка :
Ка
=
.
Ка зависит от Т, но не зависит от концентрации растворенного вещества.
Активность растворителя (воды) в разбавленных растворах можно считать постоянной:
Ка
=
Кд
=
.
Величина Кд называется термодинамической константой диссоциации (или просто константой диссоциации).
Заменив активности произведениями аналитических концентраций на соответствующие коэффициенты активности, получим
Кд
=
= Кс
,
где Кс классическая константа диссоциации.
Для
точных расчетов ионных равновесий
необходимо пользоваться термодинамической
константой диссоциации Кд
.
Коэффициенты активности можно рассчитать
по уравнениям Дебая – Гюккеля. Согласно
теории Дебая – Гюккеля, отличие активности
от концентрации обусловлено только
кулоновским взаимодействием, поэтому
для незаряженных частиц СН3СООН
= 1 и, следовательно,
Кд
= Кс
= Кс
.
