Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КЛ_МиМ в экономике_текст.doc
Скачиваний:
80
Добавлен:
05.11.2018
Размер:
16.27 Mб
Скачать

5.3. Общая задача линейного программирования. Основные определения

Исходя из частных видов задач линейного программирования общую задачу линейного программирования можно записать в виде следующей модели:

,

,

,

,

Линейная функция f называется целевой функцией задачи. Все остальное, за исключением условий неотрицательности переменных , в дальнейшем изложении будем называть ограничениями.

Любая совокупность , удовлетворяющая ограничениям, называется допустимым решением (допустимым планом) задачи. Если задача линейного программирования имеет хотя бы одно допустимое решение, то ее ограничения называются совместными, в противном случае - несовместными.

Все допустимые решения образуют область применения задачи линейного программирования, или, по-другому, область допустимых решений. Допустимое решение, максимизирующее или минимизирующее целевую функцию f, называется оптимальным решением (оптимальным планом) задачи.

5.4. Графический метод решения задач линейного программирования

Графическим методом можно решать, в основном, задачи линейного программирования, имеющие две переменные. В случае трех переменных графический метод становится менее наглядным, а при большом числе переменных - невозможным. Однако графический метод позволяет выявить свойства решений задачи линейного программирования, которые станут основой для рассмотрения общего метода решения задач линейного программирования.

Решим графическим методом задачу линейного программирования с двумя переменными:

f=x1-3x2  min

(8)

(9)

x10, x20.

(10)

I этап. Графическая интерпретация области допустимых решений

1.1. Начнем решение задачи с построения области ее допустимых решений (рис. 1). В первую очередь отобразим в прямоугольной системе координат условия неотрицательности переменных (10). В двумерном пространстве уравнению соответствует прямая, а неравенству - полуплоскость, лежащая по одну сторону от прямой. Построим прямые x1=0, x2=0, которые лежат на границах полуплоскостей и совпадают с осями координат. Полуплоскости x1>0, x2>0 лежат соответственно справа от ости 0x2 и выше оси 0x1. Множество точек, удовлетворяющих одновременно неравенствам x10 и x20, представляет собой пересечение построенных полуплоскостей вместе с граничными прямыми и совпадает с точками первой четверти.

1.2. Теперь рассмотрим ограничения задачи (9). Построим по порядку прямые:

10x1+3x2=30 (I),

-x1+x2=3 (II),

x1-x2=4 (III),

x1+x2=10 (IV).

и определим, с какой стороны от этих прямых лежат полуплоскости, точки которых удовлетворяют соответственно строгим неравенствам:

10x1+3x2>30,

-x1+x2<3,

x1-x2<4,

x1+x2<10.

Сторона, в которой располагается полуплоскость от прямой, указывается стрелками.

Убедиться в том, с какой стороны от прямой лежит полуплоскость, точки которой удовлетворяют заданному неравенству, можно путем подстановки координат точек одной или другой полуплоскости в неравенство. Когда прямая, ограничивающая полуплоскость, не проходит через начало координат, удобнее всего подставлять точку с координатами (0, 0). Если координаты точки удовлетворяют неравенству, то эта точка лежит в полуплоскости, соответствующей данному неравенству. В противном случае неравенству будет соответствовать другая полуплоскость.

Рис. 1.

1.3. Область определения задачи (8)-(10) будет представлять собой пересечение всех построенных полуплоскостей. В данном случае это многоугольник АВСДЕ. Каждая точка этого многоугольника, включая и точки, лежащие на его границах, будет удовлетворять ограничениям (9)-(10).