
- •2.Уравнение тяги как результирующая действия всех газодинамических сил. Полный импульс тяги. Удельный импульс и удельная тяга. Давление, температура горения топлива, энергомассовое совершенство
- •3.Термодинамический расчет процессов в камере. Основные термодинамические характеристики топлива, порядок их определения.
- •5.Определение газодинамических параметров течения в сопле с помощью газодинамических фнункций.
- •6. Типы зарядов и их основные характеристики. Требования, предьявляемые к зарядам. Выбор требуемой поверхноси горения .Расчет заряда канально-щелевой формы.
- •8.Причины отклонения параметров рдтт от номинальной величины. Определение разброса вбх. Регулирование по давлению и тяге.
- •8.1 Классификация жрд, облости применения ,преимущества и недостатки.Характеристики камеры и двигателя. Коэффициенты потерь. Характеристики: расходная высотная. Топлива для жрд.
- •9.Основные элементы процессов превращения. Назначение и виды форсунок. Головки к.С. Схемы расположения форсунок. Расчет соотношения по сечения камеры.
- •10. Регулирование жрд. Запуск и остановка двигателя. Основные задачи регулирования.
- •11. Охлаждение жрд. Процессы теплообмена и защиты стенок камеры сгорания. Особенности теплообмена. Способы охлаждения. Расчет охлаждения.
- •13. Система управления ла. Типы траекторий. Определение дальности полета. Траектория наведения. Системы управления ла.
- •14.Основные характеристки рдтт
- •15.Компоновка ла
- •16.Компоновочные схемы ракет; способы создания управляющих сил и моментов. Принцип разбиение ракеты по ступеням.
- •17.Основные весовые и геометрические характеристики ла
- •18. Основные конструктивные схемы гибридных, турбореактивных, ракетно-прямоточных двигателей, комбинированных ракетно-прямоточных двигателей. Основные узлы и элементы.
- •19.Эллиптическая траектория. Интеграл площадей и энергий. Форма и основные участки траектории.Оптимальный угол бросания.Оценка дальности полета по эллиптической и паробалической траекториям
- •21.Системы управления движением ла, их назначение и общая структурная схема. Управление дальностью полета.
- •3.Управление дальностью полета.
- •3.Управление дальностью полета. По Бульбовичу:
- •22. Возмущенное движение ла. Линеаризация уравнений возмущенного движения. Разложение возмущеного движения на продольное и боковое. Динамические коэффициенты.
- •25. Классификация динам. Нагрузок, действующих на ла на различных этапах его эксплуатации. Нагрузка при транспортировке. Ветровая нагрузка. Акустическая нагрузка. Пульсация давления в камере рдтт.
- •29.Задачи динамического анализа ла. Основные задачи динамического анализа. Методы решения динамических задач. Технические решения на этапе динамического анализа.
- •33.Основные особенности 2-х фазного течения. Потери удельного импульса в сопле: их классификация, физические процессы их обуславливающие.
- •37. Назначение хвостового оперения. Балансировочная зависимость. Общий подход к выбору оперения в начальном приближении.
- •44. Основные модели напряженно-деформированного состояния,используемые для прочноскрепленных зарядов рдтт. Запасы прочности, как соотношение разрушающей и расчетной нагрузок. Коэффициент безопасности.
- •45. Математическая постановка мкэ. Основные этапы решения задачи мкэ. Запись основных соотношений теории упругости для конечного элемента в матричной форме.
- •46.Расчет пластин. Основные уравнения и гипотезы. Вывод основных уравнений теории тонких пластин в декартовой системе координат.
- •47.Изгиб пластин. Дифференциальное уравнение упругой поверхности пластины. Методы решения дифференциального уравнения пластины.
- •48.Геометрия оболочек вращения. Гипотезы кирхгофа-лява и геометрические соотношения. Основные соотношения общей теории оболочек.
- •49. Уравнения безмоментной теории оболочек(бто). Уранения осесимметиричной задачи. Сферическая и цилиндрическая оболочки при действии внутреннего давления.
- •51.Устойчивость цилиндрических оболочек. Основные уравнения устойчивости цилиндрических оболочек. Устойчивость цилиндрических оболочек при осевом сжатии и внешнем давлении.
- •52. Основные силы, действующие на корпус ла в полёте и характер их изменений. Определение осевых сил, действующих на корпус ла в полёте.
- •53.Расчет топливных отсеков. Расчет корпуса рдтт. Расчет сферических, эллиптических и торосферических днищ. Особенности расчета на прочность конструкции жрд.
- •54.Конструкция и расчет сопловых блоков двигателей.
- •55.Конструкция и расчет обечаек камер сгорания рдтт.
- •56.Конструкция и расчет органов управления
- •57.Конструкторско-технологическая характеристика соединений.
- •2.Неразъемные
- •58. Конструкция баростендов для испытания двигателей
- •59. Надежность ла на этапе отработки.
- •60.Надежность ла на этапе серийного производства..
- •61. Содержание эксплуатационных испытаний рдтт при отработке.
- •62. Испытание рдтт на служебную безопасность.
- •63.Способы наведния на цель. Системы управления зур.
- •64.Расчетные траектории – телеуправляемые, самонаводящиеся, с комбинированной системой управления.
- •65.Классификация крылатых ракет. Типы траекторий крылатых ракет. Траектория пикирования крылатой ракеты.
- •66.Особенности конструкции, системы наведения и проектированияя авиационными ракетами. Противоспутниковые авиционные ракеты
- •68. Классификация ракетных снарядов
- •69.Методика проведения статического прочностного анализа прочноскрепленного заряда рдтт с использованием конечно-элементных пакетов.
- •70. Методика проведения модального анализа прочноскрепленного заряда рдтт с использованием конечно- элементных пакетов.
- •71.Методика проведения гармонического анализа прочноскрепленного заряда рдтт с использованием конечно-элементных пакетов.
- •72.Методика проведения динамического анализа прочноскрепленного заряда рдтт с использованием конечно-элементных пакетов.
- •73. Методика определения ндс прочноскрепленного заряда рдтт при действии температуры с использованием конечно-элементных пакетов.
- •74.Методика проведения температурно-прочностного анализа прочноскрепленного заряда рдтт с использованием конечно-элементных пакетов.
- •75.Методика проведения расчета на устойчивость цилиндрической оболочки с использованием конечно-элементных пакетов.
- •76.Общие сведения о пкм. Основные определения, структура материалов, фазы, назначение связующих и наполнителей в составе материалов.
- •78.Формование изделий из пкм методы форования:намотка, прессование, автоклавное формование, режимы формования.
- •79. Физико-мех., теплофизические и др. Свойства угле-, стекло-, органо , боропластиков, термопластичных км.
- •80. Теплонапряженные узлы ла и дла из пкм. Расчет температурных полей,анализ толщин с учетом и без учета абляции,оценка тепло и термостоикости.
- •81.Структурные особенности материала и учет их в конструкциях, анализ прочности.
- •82. Химическая стойкость пкм в конструкциях ла и дла
- •83. Техническая подготовка производства.
- •84. Тип производств и его определение.
- •85.Точечные диаграммы и практические кривые распределения (рассеивания) размеров(погрешностей).
- •86.Классификация баз. Принципы совмещения баз при постороении операций. Принцип постоянства баз.
- •87. Погрешности обработки, вызываемые установкой заготовок.
- •88.Припуски. Максимальный и минимальный припуски.
- •89.Понятине технологичности. Количественная оценка технологичности. Качественная оценка технологичности.
- •90. Основные принципы построения технологических процессов.
- •91 Принципы выбора топлива и формы заряда для конкретной конструкции рдтт
- •92. Сравнительный анализ характеристик баллиститных и смечевых твердых топлив.
- •93.Особенности проектирования заряда торцевого горения.
- •94. Факторы, влияющие на скорость горения твердого топлива
- •95. Принцип выбора бронирующего покрытия для заряда тт.
- •96.Типы воспламенительных составов и принципы проектированиявоспламенителей.
- •97. Технология производства зарядов из смесевых твердых топлив.
- •98.Технология изготовления зарядов из баллиститных твердых топлив.
- •99.Технология нанесения бронирующих (от 3 до 8 мм)
- •100.Технология крепления зарядов твердого топлива в камере сгорания рддт
- •101.Технология подготовки корпусов рдтт перед их заполнением.
- •102.Технология производства пиротехнических воспламенительных составов.
- •109. Назначение и содержание технического задания.
- •110.Назначение и содержание технического предложения
- •111. Назначение и содержание эскизного и технического проектов
- •112.Назначение и содержание программы и методики испытаний.
- •113.Назначение и содержание правил по обращению.
- •114.Назначение и содержание технических условий
- •115.Динамика системы поверхность горения - камера
- •120.Динамическое состояние заряда: вязкоупругая модель.
- •122.Расчет динамического ндс по коэффициентам усиления. Определения расчетных случаев оценки динамической прочности заряда при продольной акустической неустойчивости рдтт.
55.Конструкция и расчет обечаек камер сгорания рдтт.
Основной несущий элемент корпусаОбечайки корпусов делятся по форме на цилиндрические, конич.. сферические, а по наличию сварных швов –на сварные(с кольцевыми , спиральными и продольными швами) и бесшовные (раскатные и цельнотянутые). Обечайки могут быть с гладкими поверхностями или иметь приклеенныые, припаяные или привареные к ним местные элементы. Обечайки могут заканчиваться фланцами или переходами в днища. Могут иметь промежуточные пояса жесткости( кольца, бандажи, хомуты).
Для приближенных
расчетов исходных напряжений вдоль
образующей и по кольцу от действия
давления внутри камеры в длинном гладком
цилиндре пользуются формулами:
Обечайки могут быть металлические, композиционные, комбинированные. Чаще всего используют металлические обечайки. Применяемые материалы:низколегированные стали; среднелегированные стали (12Х18Н10Т); высоколегированные стали (применяются очень редко); высокопрочные стали (применяются для конструкций, работающих в тяжелых условиях); титановый сплавы; КМ (недостатки: газопроницаемы при высоких давлениях, меняют геометрические размеры, дорогие).
Композиты
применяют для тех изделий, где требуется
большая эффективность, не смотря на
стоимость. У композитов очень маленькая
жесткость
высокая податливость.
Металлические обечайки изготавливают раскаткой (обработка метала давлением). При больших диаметрах используется сварка, т. е. идет вальцовка листа и последующая сварка (чаще применяют спиральный шов).
Толщина обечайки
(радиальными и осевыми напряжениями
пренебрегают):,
– запас прочности на сварной шов (1,2);f– коэффициент безопасности (1,2…1,5).
Вблизи днища
напряжения возрастают (краевой эффект).
Напряжение изгиба:,
– коэффициент Пуассона.
Краевой эффект.
Под действием внутреннего давления
обечайка изгибается. Для пластичных
материалов это не опасноработа
переходит в деформацию. Для хрупких
материалов
работа
переходит в напряжение. Для высокопрочных
и малопластичных материалов может
происходить разрушение. Для низколегированных
сталей не опасно.
В избежания краевого эффекта применяют шпангоуты и местное утолщение (при давлении до 150 атм.)
.
Замок:
Учет осевой силы производится в случае сжатия обечайки. Для сжимающей силы проводят расчет на устойчивость обечайки:
Устойчивость оболочки при действии внешнего давления:
- для коротких обечаек;
- для длинных обечаек (
).
Устойчивость при кручении управление по крену:
-
для корот. обечаек;
-
для длинных обечаек (
);
.-действ.
Устойчивость при изгибе (по тангажу и рысканию):
-
для коротких обечаек(
);
-длинных;
.кольцевой
При работе двигателя подкрепляющее влияние заряда на корпус, как правило, не учитывается, т. е. появляется сверхнормированный запас. Влияние ТЗП на прочность корпуса также не учитывается из-за малой жесткости ТЗП.
Оболочки из композитных материалов
Основные достоинства: высокая удельная прочность; высокая удельная жесткость; коррозионная стойкость; низкая теплопроводность.
Основные недостатки:
газопроницаемость при высоких давлениях; набухание; низкая прочность на срез слоя; анизотропия материала;
- осевое направление
- тангенциальное направление
При расчете выбирается максимальная толщина.
при длительном времени работы из-за низкой теплопроводности возникают термические напряжения;
с точки зрения прочности заряда прочностной расчет зависит от отношения модулей;
при разрушении у стеклопластиков отсутствуют пластические деформации.
В оболочке из композитов необходимо усиление в зоне краевого эффекта и полное исключение концентраторов напряжения.
Комбинированная обечайка
Задача
оптимизации: необходимо учитывать
пределы прочности стали и композита.