Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эккерт цнс.doc
Скачиваний:
114
Добавлен:
12.02.2015
Размер:
15.64 Mб
Скачать

6.3.1. Скорость распространения нервных импульсов

 

В 1830 г. один из крупнейших физиологов XIX века Иоганн Мюллер заявил, что скорость распространения ПД измерить невозможно. По его мнению, поскольку ПД – это электрический импульс, он должен проводиться со скоростью, примерно равной скорости света (3–1010 см/с); учитывая небольшие размеры биологических объектов, даже с помощью лучших инструментов того времени измерить такую скорость было невозможно.

Спустя 15 лет один из студентов Мюллера Герман фон Гельмгольц с помощью простого и изящного эксперимента, который легко воспроизвести на студенческом лабораторном практикуме (рис. 6–8), измерил скорость распространения импульсов в нерве лягушки. В своих опытах Гельмгольц раздражал нерв в двух участках, отстоящих друг от друга на 3 см, и измерял время от момента подачи стимула до максимума мышечного сокращения. Предположим, что при раздражении дистального (расположенного ближе к мышцам) участка это время уменьшается на 1 мс. Тогда скорость распространения импульсов V равна

 

V

=

d

/

t

=

3 см

/

1 мс

=

3

·

103

см/с

 

 

 

Рис. 6.8. Экспериментальная установка, аналогичная той, с помощью которой Гельмгольц измерил скорость распространения импульсов в нерве лягушки. Стимулирующие электроды сначала подводились к точке Ст1, а затем  к точке Ст2. К мышце был подсоединен рычаг, заостренный конец которого вычерчивал кривую на закопченном листе бумаги, быстро передвигаемом в продольном направлении.

 

 

 

Эта величина оказалась на семь порядков меньше, чем скорость распространения электрического тока в медном проводнике или в растворе электролита. Отсюда Гельмгольц сделал совершенно правильный вывод, что проведение нервного импульса –это более сложный процесс, чем простое продольное распространение тока в нервном волокне.

Скорость распространения импульсов в различных аксонах варьирует от 120 м/с (в некоторых крупных волокнах) до нескольких сантиметров в секунду (в очень тонких аксонах). Эти различия между скоростью проведения в разных волокнах иллюстрируют табл. 6–1 и рис. 6–9.

Скорость распространения импульса в значительной степени зависит от того, как быстро участок мембраны, расположенный на определенном расстоянии от места подачи стимула, деполяризуется местными токами до порогового уровня. Чем выше постоянная длины волокна, тем дальше могут распространяться эти токи, тем быстрее происходит деполяризация мембраны впереди от места возбуждения и, следовательно, тем выше скорость распространения импульса. Влияние постоянной длины на эту скорость можно продемонстрировать, если поместить аксон в масло или в воздух. При этом на поверхности аксона остается лишь тонкая пленка солевого раствора, и постоянная длины уменьшается из–за увеличения наружного продольного сопротивления [в уравнении (6–2) –r0]. В этих условиях скорость проведения возбуждения будет ниже  чем при погружении аксона в солевой раствор.

 

Таблица 6–1. Классификация нервных волокон лягушки по их диаметру и скорости проведения возбуждения (Erlanger, Gasser, 1937)

Группа волокон

Диаметр, мкм

Скорость, м/с

 A   α

18,5

42

 β

14,0

25

 γ

11,0

17

 B

4,2

 C

2,5

0,4 –0,5

 

Рис. 6.9. Скорость распространения возбуждения в различных группах волокон нерва лягушки. А. Экспериментальная установка для стимуляции пучка  нервных волокон и регистрации возникающих при этом  потенциалов. Б. Составной потенциал действия, записанный с помощью внеклеточных электродов и представляющий собой сумму потенциалов во всех  возбужденных волокнах пучка. Волокна группы α имеют наибольший диаметр и характеризуются самой высокой скоростью проведения. Напротив, у волокон группы γ как диаметр, так и скорость проведения наиболее низки (см табл. 6–1). Стимуляция осуществлялась до момента  начала регистрации.

 

 

 

 

В процессе эволюции живые организмы выработали два способа увеличения постоянной длины аксона и тем самым–скорости распространения импульса. Один из них (типичным примером могут быть гигантские аксоны кальмаров, членистоногих кольчатых червей, костистых рыб) – это увеличение диаметра аксона, т. е. уменьшение внутреннего продольного сопротивления [в уравнении (6–2) – ri Подробнее этот вопрос рассмотрен в дополнении 6–2. Гигантские аксоны развились в процессе эволюции у некоторых видов животных для того, чтобы обеспечивать быструю синхронную активацию двигательных рефлексов, например движений мантии у кальмара и рефлекса отдергивания либо избегания у некоторых членистоногих (раков, тараканов) и кольчатых червей (например, земляных).