
- •Биохимия животных Электронный дидактический комплекс (эдк)
- •Физическая химия вода
- •Активная реакция водных растворов
- •Ионное произведение воды. Водородный показатель
- •Методы определения рН среды
- •Роль активной реакции среды в биологических процессах
- •Буферные pacтворы, состав, механизм действия
- •Буферная емкость
- •Биологическое значение буферных систем
- •Коллоидная химия
- •Классификация дисперсных систем
- •Поверхностные явления
- •Адсорбция
- •Коллоидные растворы (золи) Методы получения
- •Строение коллоидных частиц
- •Коагуляция. Седиментация. Пептизация
- •Молекулярно-кинетические свойства коллоидных растворов
- •Осмотическое давление
- •Биологическое значение явления осмоса
- •Механизмы, участвующие в сохранении изоосмии:
- •Оптические свойства коллоидных систем
- •Растворы высокомолекулярных соединений
- •Свободная и связанная вода в коллоидных pacтвopax
- •Свойства растворов вмс
- •Денатурация
- •2. Белки; биологическая роль Аминокислоты
- •Содержание белков в организме и тканях
- •Методы выделения белков
- •Методы фракционирования и очистки белков
- •Физико-химические свойства белков
- •Аминокислоты
- •Ациклические аминокислоты
- •Структура белковой молекулы
- •Классификация белков
- •Химия сложных белков
- •3. Нуклеиновые кислоты
- •Нуклеотиды и нуклеозиды
- •Структура днк
- •Рибонуклеиновые кислоты
- •4. Ферменты
- •Биосинтез и клеточная локализация ферментов
- •Химическая природа ферментов
- •Строение ферментов
- •Активный центр фермента
- •Регуляция активности ферментов
- •Механизм действия ферментов
- •Основные свойства ферментов
- •2. Зависимость активности ферментов от рН среды.
- •Факторы, определяющие активность ферментов
- •Активирование и ингибирование ферментов
- •Типы ингибирования
- •Классификация и номенклатура ферментов
- •Применение ферментов.
- •Использование иммобилизованных ферментов для производства биологических соединений
- •Иммуноферментный анализ и его использование в ветеринарии
- •5. Химия витаминов
- •Классификация и номенклатура витаминов
- •I. Жирорастворимые витамины
- •II. Витамины, растворимые в воде
- •Витамин d, антирахитический, кальциферол
- •Витамин e, антистерильный, токоферолы
- •Витамин к, антигеморрагический (филлохинон)
- •Витамин q (убихинон)
- •Водорастворимые витамины
- •Витамин b1, антиневритный, тиамин
- •Витамин b2, рибофлавин
- •Витамин b3, пантотеновая кислота
- •Витамин b5, pp, никотинамид, ниацин, антипеллагрический
- •Витамин b6, адермин, пиридоксол
- •Витамин b12, кобаламин, антианемический
- •Фолиевая кислота
- •Витамин с (аскорбиновая кислота)
- •Биотин, витамин h
- •6. Гормоны
- •Гормоны гипофиза
- •Поджелудочная железа
- •Гормоны щитовидной железы
- •Гормоны надпочечников
- •Гормоны коры надпочечников
- •Гормоны половых желез
- •Гормоны тимуса (вилочковой железы)
- •Гормоны местного действия
- •7. Обмен веществ и энергии
- •Основные этапы обмена веществ
- •Биологическое окисление
- •Окислительное фосфорилирование
- •Токсичность кислорода
- •8. Химия и обмен углеводов
- •Моносахариды
- •Производные моносахаридов.
- •Полисахариды (гликаны)
- •Гетерополисахариды (гетерогликаны)
- •Обмен углеводов
- •Катаболизм глюкозы
- •Гликогенолиз
- •Биосинтез углеводов
- •Биосинтез гликогена (гликогенез)
- •Регуляция углеводного обмена.
- •9. Химия и обмен липидов
- •Химическое строение нейтральных жиров
- •Жирные кислоты.
- •Нейтральные гликолипиды
- •Фосфолипиды (фосфатиды)
- •Сфинголипиды
- •Двойной липидный слой мембран
- •Обмен липидов
- •Переваривание липидов в желудочно-кишечном тракте
- •Промежуточный обмен липидов
- •Энергетический баланс β-окисления жирных кислот
- •Метаболизм ацетил-коэнзима а
- •Пути образования кетоновых тел
- •Биосинтез липидов
- •Метаболизм стеринов и стеридов
- •Липосомы
- •10. Обмен белков
- •Биологическая ценность белков
- •Нормы белка в питании животных
- •Белковые резервы организма
- •Обмен простых белков
- •Переваривание белков в желудочно-кишечном тракте моногастричных животных
- •Переваривание белков в кишечнике.
- •Особенности переваривания белков у жвачных животных
- •Дезаминирование аминокислот
- •Трансаминирование – непрямой путь дезаминирования аминокислот
- •Декарбоксилирование аминокислот
- •Окислительное расщепление аминокислот
- •Особенности обмена отдельных аминокислот
- •11. Биосинтез белка
- •Генетический код
- •Этапы синтеза белка
- •Мультиферментный механизм синтеза белка
- •12.Обмен нуклеиновых кислот Переваривание нуклеиновых кислот в желудочно-кишечном тракте
- •Промежуточный обмен нуклеиновых кислот Распад нуклеиновых кислот в тканях
- •Пиримидиновые основания
- •Биосинтез нуклеиновых кислот
- •Рекомбинантные молекулы и проблемы генной инженерии
- •Клонирование животных
- •Метод молекулярной гибридизации
- •Принцип метода
- •Способы гибридизации
- •Метод блоттинга по Саузерну
- •Полимеразная цепная реакция (пцр)
- •Необходимые приборы и реактивы
- •13. Обмен воды и солей
- •Вода, ее содержание и роль в организме
- •Потребность животного организма в минеральных веществах, их поступление и выделение
- •Микроэлементы
- •14. Биохимия крови
- •Физико-химические свойства крови
- •Буферные системы крови
- •Плазма крови и ее химический состав
- •Белки плазмы и сыворотки крови
- •Небелковые азотистые вещества крови
- •Форменные элементы крови
- •15. Биохимия мышечной ткани
- •Механизм сокращения мышцы
- •Азотистые экстрактивные вещества мышц
- •Минеральные вещества
- •Окоченение мышц
- •16. Биохимия молока и молокообразования
- •17. Биохимия почек и мочи
- •Патологические компоненты мочи
- •Особенности мочи птиц
- •18. Биохимия кожи и шерсти
- •19. Биохимия яйца
- •Биосинтез компонентов яйца
- •Предметный указатель
- •Приложения
- •Рекомендуемая литература
- •Тесты для проверки биохимических
- •Глава 8. Химия обмена углеводов
- •24. Сложноэфирные связи в молекулах триацилглицеролов подвергаются ферментативному гидролизу при участии:
- •Глава 11. Синтез белка
- •Глава 12. Обмен нуклеиновых кислот
- •Глава 13. Биохимия почек и мочи
Окислительное фосфорилирование
Окислительное фосфорилирование происходит в митохондриях в процессе биологического окисления в дыхательной цепи. Энергия, высвобождающаяся в дыхательной цепи, аккумулируется в макроэргических соединениях АТФ. Энергия, освобождающаяся в процессе биологического окисления только частично рассеивается в виде тепла (около 40%), а большая часть накапливается в форме макроэргических молекул АТФ (около 60%). Молекула АТФ – это универсальный акцептор и донор химической энергии в клетках. Гидролиз каждой макроэргической связи АТФ сопровождается выделением 7,3 килокалорий энергии на 1 грамм-молекулу. В дыхательной цепи при переносе каждой пары электронов на 1 атом кислорода образуется 3 молекулы АТФ, то есть отношение фосфора к кислороду равно трем: P / О = 3. Синтез молекулы АТФ происходит в определенных участках дыхательной цепи. На каждом этапе синтеза АТФ аккумулируется 8 ккал на каждую грамм-молекулу образовавшейся АТФ.
Рис.7.2. Схема дыхательной цепи.
Свободное окисление происходит без фосфорилирования, то есть при этом АТФ не синтезезируется. Такое окисление происходит на наружной поверхности митохондрий с участием таких же ферментов, как внутри митохондрий, промежуточные и конечные продукты окисления также не отличаются от продуктов дыхательной цепи. Отличие только в том, что в этом случае не образуются макроэргические соединения (АТФ). Свободное окисление происходит также в пероксисомах цитоплазмы, где главным ферментом является пероксидаза (каталаза), окисляющая H2O2. Свободное окисление важно для поддержания температуры тела в условиях холода, так как энергия, выделяющаяся при этом, рассеивается в виде тепла.
Микросомальное окисление происходит в микросомах. В мембранах клеток имеется окислительная система, которая катализирует гидроксилирование различных субстратов:
RH
+ O2
+ НАДФН2
ROH
+ H2O
+ НАДФ
Реакция происходит с участием кислорода и восстановленной формы НАДФ. При этом один атом молекулярного кислорода включается в R-OH, другой идет на образование воды. Это так называемое монооксигеназное окисление. Фермент цитохром Р450 катализирует образование гидроксильных (-ОН) групп при синтезе желчных кислот, стероидных гормонов, катаболизме чужеродных соединений (ксенобионты).
Токсичность кислорода
Молекулярный кислород O2 в клетках может образовать супероксидный анион O2-, который действует как окислитель (акцептор электрона) и как восстановитель (донор электрона).
Супероксид, пероксид водорода (H2O2), гидроксильный радикал (–ОН) имеют высокую химическую активность, реагируют со многими веществами организма, они оказывают повреждающее действие на липиды.
Активные формы кислорода способны отнимать водород из CH2– групп, жирных кислот, превращая их в свободнорадикальные группы –CH–. Такой радикал жирной кислоты легко присоединяет молекулу кислорода и превращается в пероксидный радикал жирной кислоты.
Такой радикал может отнимать водород от другой молекулы жирной кислоты. В результате возникает цепная реакция. Это пероксидное окисление липидов приводит к разрушению структуры мембран.
Защита от перекисного окисления – окисление каталазой, глутатион-пероксидазой (фермент, соединенный с селеном).
Витамин E совместно с микроэлементом селеном может предотвращать перекисное окисление липидов, так как токоферол может окисляться (отдавать электрон) с образованием малоактивного свободного радикала.