
- •Основы электрохимии и электрохимических технологий
- •Введение
- •Окислительно-восстановительные реакции.
- •Правила уравнивания окислительно-восстановительных реакций.
- •Порядок уравнивания окислительно-восстановительных реакций, т.Е. Приведение их в форму, обеспечивающую закон сохранения энергии (баланс массы и заряда).
- •Демонстрация переноса электронов в окислительно-восстановительных реакциях. Гальванический элемент.
- •Лекция 2. Законы Фарадея и скорость электрохимического процесса Выход по току. Применение закона Фарадея к расчету скорости обработки металлов.
- •Скорость электрохимической обработки
- •Электрохимический эквивалент сплава и практический электрохимический эквивалент.
- •Лекция 3. Равновесный потенциал электрода Электрод, ячейка. Напряжение электрода и ячейки. Равновесный потенциал. Виды равновесных потенциалов.
- •Равновесный потенциал.
- •Виды равновесных потенциалов.
- •Лекция 4. Основы теории электролитической диссоциации Равновесные явления в растворах электролитов. Теория электролитической диссоциации. Ион - дипольное и ион - ионное взаимодействие в электролитах.
- •Теория Дюбая – Гюккеля и ион - ионное взаимодействие в растворах электролитов.
- •Гидролиз солей.
- •Буферные растворы.
- •Ионные равновесия при растворении. Произведение растворимости.
- •Лекция 6 Электропроводность электролитов
- •Экспериментальное определение электропроводности.
- •Особые случаи электропроводности электролитов.
- •Электроды первого рода. Потенциал ионно-металлического электрода.
- •Электроды второго рода.
- •Хлорсеребряный электрод.
- •Окислительно – восстановительные (redox) системы.
- •Водородный электрод.
- •Хингидронный электрод.
- •Мембранный потенциал или потенциал Донана.
- •Методы изучения двойного электрического слоя.
- •Модельные представления о строении двойного электрического слоя.
- •Форма поляризационной кривой при наличии стадии массопереноса.
- •Лекция 11 Теория замедленного разряда.
- •Свойства уравнения теории замедленного разряда.
- •Лекция 12 Поляризация (перенапряжение) при образовании новой фазы. Перенапряжение при лимитирующей стадии образования двумерных и трёхмерных зародышей.
- •Перенапряжение поверхностной диффузии при электроосаждении металлов.
- •Перенапряжение образования пузырьков газа и связь размеров пузырьков с потенциалом.
- •Предельные токи при электроосаждении. Эффект м.А.Лошкарёва.
- •Электрические процессы в условиях медленной гомогенной химической реакции.
- •Критерии определения природы лимитирующейстадии.
- •Лекция 14 Примеры механизмов некоторых электрохимических реакций.
- •Примеры механизмов различных электрохимических реакций. Реакция выделения водорода (водородный электрод).
- •Кинетическая теория коррозии.
- •Коррозия при кислородной деполяризации.
- •Роль локальных элементов в возникновении коррозии и достижении её скорости.
- •Методы защиты от коррозии.
- •Пассивность металлов.
- •Электрохимическая размерная обработка металлов и сплавов
- •Основы прикладной электрохимии и электрохимических технологий Лекция 1 Основные особенности электрохимических технологий.
- •Конструктивные принципы электрохимических реакторов
- •Межэлектродный зазор
- •Токовые нагрузки
- •Сепараторы
- •Подвод и отвод компонентов реакции
- •Корректировка состава электролита
- •Масштабный фактор
- •Подбор коррозионностойких материалов
- •Экономические показатели
- •Классификация основных процессов переноса при химической и электрохимической технологии
- •Лекция 2. Распределение тока и рассеивающая способность электролитов Распределение тока. Виды распределения тока. Параметр Вагнера. Рассеивающая (локализующая) способность электролитов
- •Первичное распределение тока.
- •Вторичное распределение тока.
- •Третичное распределение тока.
- •Распределение тока при высоких плотностях тока (при наличии поверхностного тепловыделения)
- •Распределение скоростей осаждения или растворения при наличии зависимости выхода по току от плотности тока
- •Методы расчёта распределения тока.
- •Методы экспериментального определения рассеивающей (локализующей) способности электролита
- •Лекция 3. Химические источники тока (хит). Основные характеристики хит
- •Лекция 4 Первичные хит (хит первого рода, элементы)
- •Сухие марганцево-цинковые (мц) элементы
- •Первичные хит с магниевыми и литиевыми анодами
- •Первичные хит с литиевыми анодами
- •Хит с твердым электролитом
- •Лекция 5 Вторичные хит (аккумуляторы).
- •Свинцовые кислотные аккумуляторы
- •Основные неисправности свинцовых кислотных аккумуляторов.
- •Щелочные аккумуляторы
- •Лекция 6 Топливные элементы.
- •Лекция 7. Электролиз водных растворов без выделения металлов Производство водорода и кислорода
- •Производство тяжелой воды
- •Интенсификация электрохимических методов получения водорода
- •Лекция 8. Электрохимическое производство хлора, щелочи и гипохлотрта натрия
- •Теоретические основы электролиза растворов хлоридов
- •Электролиз с твердым катодом и фильтрующей диафрагмой
- •Электролиз с ртутным катодом.
- •Перспективы развития хлорной промышленности
- •Электросинтез гипохлорита натрия
- •Лекция 9 Электрохимические покрытия металлами и сплавами. Теоретические основы.
- •Два метода нанесения покрытий при электролизе
- •Назначение металлических покрытий металлами и сплавами
- •Управление свойствами и размерами покрытий
- •Использование нестационарного электролиза
- •Лекция 10 Электролитическое осаждение железа.
- •Катодный процесс при электроосаждении железа.
- •Электролиты железнения и режимы электролиза
- •Анодный процесс.
- •Лекция 11. Хромирование. Свойства и области применения хромовых покрытий
- •Некоторые особенности процесса хромирования
- •Электролиты и режимы электролиза.
- •Физико-механические свойства хромовых покрытий
- •Лекция 12. Меднение Область применения
- •Сравнительная характеристика медных электролитов.
- •Борфтористоводородные электролиты
- •Цианистые электролиты
- •Пирофосфатные электролиты
- •Лекция 13. Анодная и химическая обработка металлов Оксидирование
- •Электрохимическое и химическое полирование
- •Лекция 14. Электролиз расплавов. Общие сведения.
- •Строение расплавленных солей
- •Электропроводность расплавленных солей
- •Выход по току и удельный расход энергии при электролизе расплавов
- •Влияние физико-химических свойств электролита на процесс электролиза
- •Некоторые специфические явления при электролизе расплавов
- •Лекция 15. Производство алюминия
- •Переработка алюминиевых руд
- •Получение криолита
- •Электроды и другие материалы
- •Электролиз криолит-глиноземного расплава
- •Состав электролита
- •Конструкция и эксплуатация электролизеров
- •Рафинирование алюминия
- •Электролиз хлорида алюминия
- •Лекция 16. Гидроэлектрометаллургия
- •Лекция 17. Электролиз в металлургии благородных металлов
- •Вопросы для самопроверки, задачи и упражнения
- •Заключение Основные направления современного этапа развития электрохимии и электрохимических технологий
- •Литература
Некоторые специфические явления при электролизе расплавов
Получение металлов электролизом расплавленных солей может быть осуществлено при температурах электролиза выше температуры плавления катодного металла или ниже ее. Легкие металлы на практике получают при температурах выше температуры плавления. В случае проведения электролиза при температурах ниже температуры плавления металла на катоде образуется твердый кристаллический осадок. Существенно, что при электролизе расплавленных солей электрокристаллизация протекает без особых затруднений, которые обычны в водных растворах, поэтому металл кристаллизуется в условиях, более близких к равновесным, чем при кристаллизации из водных растворов.
Для анодных процессов при электролизе расплавов специфическим является сильное повышение напряжения, получившее название анодного эффекта. В промышленности анодный эффект наблюдается чаще всего в электролизерах для получения алюминия. Сущность явления состоит в следующем.
Напряжение на ванне резко возрастает до 15 – 30 В (иногда до 100 В и более), и на границе соприкосновения анода с электролитом появляется свечение в виде мельчайших искровых разрядов. Наблюдаемое до появления анодного эффекта равномерное выделение газообразных продуктов прекращается, электролит начинает плохо смачивать поверхность анода. При этом, если источник тока не рассчитан на дополнительное напряжение, снижается сила тока на ванне.
Анодный эффект приводит к оттеснению электролита от электрода (несмачиваемость) и, следовательно, к разрыву электрического контакта между анодом и расплавом.
Каждый расплавленный электролит характеризуется критической плотностью тока, по достижении которой наступает анодный эффект. Критическая плотность тока увеличивается в ряду: фториды – хлориды – бромиды – иодиды. При повышении температуры и увеличении содержания оксидов в электролите анодный эффект наступает при более высокой плотности тока.
При анодном эффекте повышается расход энергии, увеличиваются потери металла. В то же время анодный эффект может служить в качестве контроля работы ванны, а иногда используется для разогрева остывшего электролита.
Следует отметить, что подобные явления могут наблюдаться и в водных растворах при высоких плотностях тока и напряжениях, причем как на аноде, так и на катоде. Это объясняется достижением температуры кипения в приэлектродном слое и образованием сплошной парогазовой пленки на электроде.
Лекция 15. Производство алюминия
Современный способ получения алюминия, предложенный в 1887 г., одновременно во Франции (Эру) и США (Холл), основан на электролизе глинозема (Al2O3), растворенного в криолите (Na3AlF6), с использованием электродов из углеродистых материалов. При этом на катоде получают алюминий, а на аноде – кислород, который взаимодействует с углеродом анода, образуя смесьСОиСО2.
Электролиз чистого Al2O3оказался практически невозможным: чистыйAl2O3неэлектропроводен и имеет температуру плавления 2050С, тогда как алюминий кипит при 2500С. В качестве электролита более приемлемым является расплавленный криолит (т.пл. 980С). При растворении глинозема в криолите снижается температура расплава.
В процессе электролиза криолит-глиноземного расплава многие примеси оказывают вредное влияние на процесс, включаются в катодный металл или способствуют выделению газов. Невозможность удаления примесей в процессе электролиза делает необходимым применение компонентов расплавленного электролита высокой чистоты. Его получение является важнейшей проблемой производства алюминия.
По распространенности в земной коре алюминий занимает первое место среди металлов. Значительное сродство алюминия к кислороду обусловило тот факт, что основные его минералы – кислородные соединения.
Производство глинозема высокой чистоты возможно из разных пород, содержащих алюминий. Промышленными рудами в настоящее время считаются бокситы, нефелины и алуниты. Способ производства глинозема зависит от состава руды.
В основных рудах для производства алюминия – бокситах обычно содержится несколько оксидных минералов алюминия и в малом количестве – минералы других элементов. Качество бокситов в значительной мере характеризуется так называемым кремниевым модулем – отношением Al2O3:SiO2.
В состав нефелинов входят, помимо алюминия и кремния еще калий и натрий, поэтому их рассматривают как ценное комплексное сырье, из которого можно получать глинозем, поташ или соду и материалы для цемента.
Комплексным сырьем являются также алуниты: из этого сырья кроме глинозема получают сульфаты щелочных металлов и серную кислоту. Для выплавки сплавов алюминия с кремнием используют силлиманитовые руды.