
- •Основы электрохимии и электрохимических технологий
- •Введение
- •Окислительно-восстановительные реакции.
- •Правила уравнивания окислительно-восстановительных реакций.
- •Порядок уравнивания окислительно-восстановительных реакций, т.Е. Приведение их в форму, обеспечивающую закон сохранения энергии (баланс массы и заряда).
- •Демонстрация переноса электронов в окислительно-восстановительных реакциях. Гальванический элемент.
- •Лекция 2. Законы Фарадея и скорость электрохимического процесса Выход по току. Применение закона Фарадея к расчету скорости обработки металлов.
- •Скорость электрохимической обработки
- •Электрохимический эквивалент сплава и практический электрохимический эквивалент.
- •Лекция 3. Равновесный потенциал электрода Электрод, ячейка. Напряжение электрода и ячейки. Равновесный потенциал. Виды равновесных потенциалов.
- •Равновесный потенциал.
- •Виды равновесных потенциалов.
- •Лекция 4. Основы теории электролитической диссоциации Равновесные явления в растворах электролитов. Теория электролитической диссоциации. Ион - дипольное и ион - ионное взаимодействие в электролитах.
- •Теория Дюбая – Гюккеля и ион - ионное взаимодействие в растворах электролитов.
- •Гидролиз солей.
- •Буферные растворы.
- •Ионные равновесия при растворении. Произведение растворимости.
- •Лекция 6 Электропроводность электролитов
- •Экспериментальное определение электропроводности.
- •Особые случаи электропроводности электролитов.
- •Электроды первого рода. Потенциал ионно-металлического электрода.
- •Электроды второго рода.
- •Хлорсеребряный электрод.
- •Окислительно – восстановительные (redox) системы.
- •Водородный электрод.
- •Хингидронный электрод.
- •Мембранный потенциал или потенциал Донана.
- •Методы изучения двойного электрического слоя.
- •Модельные представления о строении двойного электрического слоя.
- •Форма поляризационной кривой при наличии стадии массопереноса.
- •Лекция 11 Теория замедленного разряда.
- •Свойства уравнения теории замедленного разряда.
- •Лекция 12 Поляризация (перенапряжение) при образовании новой фазы. Перенапряжение при лимитирующей стадии образования двумерных и трёхмерных зародышей.
- •Перенапряжение поверхностной диффузии при электроосаждении металлов.
- •Перенапряжение образования пузырьков газа и связь размеров пузырьков с потенциалом.
- •Предельные токи при электроосаждении. Эффект м.А.Лошкарёва.
- •Электрические процессы в условиях медленной гомогенной химической реакции.
- •Критерии определения природы лимитирующейстадии.
- •Лекция 14 Примеры механизмов некоторых электрохимических реакций.
- •Примеры механизмов различных электрохимических реакций. Реакция выделения водорода (водородный электрод).
- •Кинетическая теория коррозии.
- •Коррозия при кислородной деполяризации.
- •Роль локальных элементов в возникновении коррозии и достижении её скорости.
- •Методы защиты от коррозии.
- •Пассивность металлов.
- •Электрохимическая размерная обработка металлов и сплавов
- •Основы прикладной электрохимии и электрохимических технологий Лекция 1 Основные особенности электрохимических технологий.
- •Конструктивные принципы электрохимических реакторов
- •Межэлектродный зазор
- •Токовые нагрузки
- •Сепараторы
- •Подвод и отвод компонентов реакции
- •Корректировка состава электролита
- •Масштабный фактор
- •Подбор коррозионностойких материалов
- •Экономические показатели
- •Классификация основных процессов переноса при химической и электрохимической технологии
- •Лекция 2. Распределение тока и рассеивающая способность электролитов Распределение тока. Виды распределения тока. Параметр Вагнера. Рассеивающая (локализующая) способность электролитов
- •Первичное распределение тока.
- •Вторичное распределение тока.
- •Третичное распределение тока.
- •Распределение тока при высоких плотностях тока (при наличии поверхностного тепловыделения)
- •Распределение скоростей осаждения или растворения при наличии зависимости выхода по току от плотности тока
- •Методы расчёта распределения тока.
- •Методы экспериментального определения рассеивающей (локализующей) способности электролита
- •Лекция 3. Химические источники тока (хит). Основные характеристики хит
- •Лекция 4 Первичные хит (хит первого рода, элементы)
- •Сухие марганцево-цинковые (мц) элементы
- •Первичные хит с магниевыми и литиевыми анодами
- •Первичные хит с литиевыми анодами
- •Хит с твердым электролитом
- •Лекция 5 Вторичные хит (аккумуляторы).
- •Свинцовые кислотные аккумуляторы
- •Основные неисправности свинцовых кислотных аккумуляторов.
- •Щелочные аккумуляторы
- •Лекция 6 Топливные элементы.
- •Лекция 7. Электролиз водных растворов без выделения металлов Производство водорода и кислорода
- •Производство тяжелой воды
- •Интенсификация электрохимических методов получения водорода
- •Лекция 8. Электрохимическое производство хлора, щелочи и гипохлотрта натрия
- •Теоретические основы электролиза растворов хлоридов
- •Электролиз с твердым катодом и фильтрующей диафрагмой
- •Электролиз с ртутным катодом.
- •Перспективы развития хлорной промышленности
- •Электросинтез гипохлорита натрия
- •Лекция 9 Электрохимические покрытия металлами и сплавами. Теоретические основы.
- •Два метода нанесения покрытий при электролизе
- •Назначение металлических покрытий металлами и сплавами
- •Управление свойствами и размерами покрытий
- •Использование нестационарного электролиза
- •Лекция 10 Электролитическое осаждение железа.
- •Катодный процесс при электроосаждении железа.
- •Электролиты железнения и режимы электролиза
- •Анодный процесс.
- •Лекция 11. Хромирование. Свойства и области применения хромовых покрытий
- •Некоторые особенности процесса хромирования
- •Электролиты и режимы электролиза.
- •Физико-механические свойства хромовых покрытий
- •Лекция 12. Меднение Область применения
- •Сравнительная характеристика медных электролитов.
- •Борфтористоводородные электролиты
- •Цианистые электролиты
- •Пирофосфатные электролиты
- •Лекция 13. Анодная и химическая обработка металлов Оксидирование
- •Электрохимическое и химическое полирование
- •Лекция 14. Электролиз расплавов. Общие сведения.
- •Строение расплавленных солей
- •Электропроводность расплавленных солей
- •Выход по току и удельный расход энергии при электролизе расплавов
- •Влияние физико-химических свойств электролита на процесс электролиза
- •Некоторые специфические явления при электролизе расплавов
- •Лекция 15. Производство алюминия
- •Переработка алюминиевых руд
- •Получение криолита
- •Электроды и другие материалы
- •Электролиз криолит-глиноземного расплава
- •Состав электролита
- •Конструкция и эксплуатация электролизеров
- •Рафинирование алюминия
- •Электролиз хлорида алюминия
- •Лекция 16. Гидроэлектрометаллургия
- •Лекция 17. Электролиз в металлургии благородных металлов
- •Вопросы для самопроверки, задачи и упражнения
- •Заключение Основные направления современного этапа развития электрохимии и электрохимических технологий
- •Литература
Лекция 13. Анодная и химическая обработка металлов Оксидирование
Оксидирование – процесс искусственного образования на поверхности металлов оксидов с целью защиты от коррозии, декоративной отделки, повышения сопротивления износу и др. Наибольшее распространение получило оксидирование алюминия и его сплавов, применяемых в качестве конструкционных материалов в самолетостроении, авиационном моторостроении и автомобилестроении, для изготовления различных изделий бытовой техники и др.
Как известно, алюминий и его сплавы всегда покрыты тонкой (0,02 – 0,04 мкм) естественной оксидной пленкой Al2O3илиAl2O3·nH2O, которая, однако, не может служить надежной защитой от коррозии в атмосфере, особенно загрязненной хлоридами. Поэтому для создания более толстого сплошного оксидного слоя изделия из алюминия и его сплавов после очистки от различных загрязнений подвергаются анодному и химическому оксидированию.
Анодное оксидирование производится в серной, хромовой или щавелевой кислотах и их смесях, химическое – преимущественно в щелочных растворах двухромовокислого калия или в хромовокислых растворах с добавками фторидов. Анодная обработка позволяет получать более толстый, плотный окисный слой, чем химическая обработка.
Пленки оксидов на алюминии и его сплавах обладают высокой адсорбционной способностью, что используется при последующей обработке поверхности антикоррозионными жидкостями и различными красителями для повышения защитных и декоративных свойств пленки. Очень толстые (100 мкм и более) оксидные пленки способствуют повышению поверхностной твердости и износостойкости, а также тепло- и электроизоляции поверхности.
Анодно-окисная пленка состоит из двух
слоев: тонкого (0,01 – 0,1 мкм)
барьерного-беспористого слоя и более
толстого пористого. Механизм возникновения
и роста такой пленки представляет собой
сложную картину физико-химических
явлений, протекающих на поверхности
алюминия при анодной его поляризации.
Предполагается, что тонкий барьерный
слой образуется и растет в результате
взаимодействия ионов алюминия и кислорода
при встречной миграции их в барьерном
слое. Ионы алюминия, возникающие по
реакции Al→Al3++3,
мигрируют вследствие большой напряженности
электрического поля в ионной решетке
окисла к внешней поверхности барьерного
слоя, а ионы кислорода, образующиеся на
поверхности барьерного слоя по реакцииН2О→ 2Н++О2-,
мигрируют в направлении к металлу
навстречу ионамAl3+(рис. 13.1).
Рис. 13.1. Схема анодного процесса ионизации алюминия, электродной реакции передачи кислорода из молекулы воды на оксидируемый металл и образования Al2O3.
В порах (d= 0,05 – 0,1 мкм), заполненных электролитом, происходит дальнейшее формирование нового барьерного слоя. Таким образом, окисная пленка растет за счет образования пористого слоя, продвигаясь в глубь металла (рис. 13.2).
Рис.13.2. Схема образования оксидной пленки на алюминии.
В общем виде процесс анодного окисления алюминия можно выразить уравнением:
2Al
+ 3H2O
→ Al2O3
+ 6H+
+ 6(13.а)
Так как под действием электролита окисная пленка растворяется, то рост ее будет зависеть от относительных скоростей образования и растворения барьерного слоя. При равенстве этих скоростей толщина барьерного слоя сохраняется практически постоянной. При этом с внешней стороны барьерный слой под действием электролита разрыхляется и в нем образуются поры.
Одним из главных условий нормального роста пленки является подбор состава электролита и условий электролиза, при которых образующийся окисный слой в течение электролиза поддерживается как бы в разрыхленном, проницаемом для ионов состоянии. Максимальная толщина анодных пленок для каждого условия проведения процесса имеет предел, до которого возможен их рост.
В качестве электролита при анодном оксидировании чаще всего применяется 20%-ный раствор серной кислоты при температуре около 20С. При увеличении концентрацииH2SO4и повышении температуры при прочих равных условиях возрастают скорость растворения и пористость пленки и уменьшается толщина пленки. Поэтому при наращивании толстых пленок процесс ведут, как правило, при более низкой температуре. Скорость формирования окисной пленки возрастает при повышении плотности тока. Однако при увеличении плотности тока выше допустимого предела для данных условий скорость формирования может уменьшиться вследствие увеличения температуры в зоне роста пленки.
Пленки толщиной до 10 – 15 мкм получают при комнатной температуре и плотности тока 1 – 2 А/дм2, напряжении 12 – 28 В за 20 – 40 мин, а пленки толщиной 50 – 100 мкм – при температуре не выше 0С, плотности тока 2 – 10 А/дм2, напряжении 80 – 120 В за 90 мин. В электролите, содержащем серную и щавелевую (или другую органическую) кислоты, толстые пленки можно получать при 20С. Пленки толщиной 150 мкм и более получают с применением двустороннего охлаждения: электролита и металла (внутреннее охлаждение).
Оксидирование алюминия возможно переменным током в серной и щавелевой кислотах при пониженной концентрации (до 12 – 13%).
Для повышения защитных и антикоррозионных свойств окисной пленки изделия после оксидирования и промывки обрабатывают паром или горячей водой, погружают в горячие растворы хроматов и бихроматов. При этом происходит гидратация оксида и поры смыкаются, а при обработке хроматами, кроме того, образуются соединения типа (AlO)2CrO4.
Для окрашивания оксидированной поверхности алюминия применяют органические и неорганические красители. Последние представляют собою нерастворимые соединения, которые образуются в порах пленки в результате химических реакций, протекающих при последовательном погружении изделий в соответствующие растворы. Так, при погружении в растворы железистосинеродистого калия и хлорного железа поверхность окрашивается в синий цвет.
Существует процесс защитно-декоративной обработки алюминия под названием эматалирование. Он отличается от способа оксидирования главным образом тем, что обработку ведут в менее агрессивных электролитах, содержащих щавелевую, борную, лимонную кислоты низкой концентрации и щавелевокислые соли титана, при 40 – 60С. Получаемые пленки имеют молочный оттенок и хорошо окрашиваются.
Для получения оксидных пленок с высокими электроизоляционными свойствами применяют щавелевокислые электролиты. Такие электролиты могут работать на постоянном и переменном токе. Пробивное напряжение при соответствующей толщине пленки достигает 500 В и выше. Электролит, работающий на постоянном токе, содержат 50 – 70 г/л щавелевой кислоты. Температура электролита 25 – 30С, анодная плотность тока 1,5 А/дм2, напряжение на ванне 40 – 60 в. Время обработки 0,5 – 2,5 ч.
Для защиты магния и его сплавов от коррозии может быть также применено анодное окисление. В зависимости от методов оксидирования можно получить пленки толщиной до 60 – 80 мкм (защитные пленки, получаемые химическим путем, имеют толщину порядка 3 – 5 мкм).
Используется также оксидирование сталей, для чего применяются концентрированные растворы щелочей или смеси хромовой и борфтористой кислот.
Оксидирование производят переменным током при начальной плотности тока 5 А/дм2и напряжении 75 В. Температура электролита 70 – 80С. В состав пленки входят сложные нерастворимые соединения фосфата магния, фторида магния и соединения хрома.
Для анодирования титана применяют серную кислоту, щавелевую или смесь серной и фосфорной кислот.
Толщина оксидных пленок не превышает 1,5 мкм. Эти пленки весьма пористы и хорошо удерживают смазку, обеспечивая улучшение антифрикционных свойств.
Оксидные пленки, получаемые на титане технической чистоты, не проявляют диэлектрических свойств подобно оксидным пленкам на алюминии, т.е. не являются препятствием для прохождения электрического тока. Исключением являются пленки, получаемые из серно-фосфорного электролита.