
- •Основы электрохимии и электрохимических технологий
- •Введение
- •Окислительно-восстановительные реакции.
- •Правила уравнивания окислительно-восстановительных реакций.
- •Порядок уравнивания окислительно-восстановительных реакций, т.Е. Приведение их в форму, обеспечивающую закон сохранения энергии (баланс массы и заряда).
- •Демонстрация переноса электронов в окислительно-восстановительных реакциях. Гальванический элемент.
- •Лекция 2. Законы Фарадея и скорость электрохимического процесса Выход по току. Применение закона Фарадея к расчету скорости обработки металлов.
- •Скорость электрохимической обработки
- •Электрохимический эквивалент сплава и практический электрохимический эквивалент.
- •Лекция 3. Равновесный потенциал электрода Электрод, ячейка. Напряжение электрода и ячейки. Равновесный потенциал. Виды равновесных потенциалов.
- •Равновесный потенциал.
- •Виды равновесных потенциалов.
- •Лекция 4. Основы теории электролитической диссоциации Равновесные явления в растворах электролитов. Теория электролитической диссоциации. Ион - дипольное и ион - ионное взаимодействие в электролитах.
- •Теория Дюбая – Гюккеля и ион - ионное взаимодействие в растворах электролитов.
- •Гидролиз солей.
- •Буферные растворы.
- •Ионные равновесия при растворении. Произведение растворимости.
- •Лекция 6 Электропроводность электролитов
- •Экспериментальное определение электропроводности.
- •Особые случаи электропроводности электролитов.
- •Электроды первого рода. Потенциал ионно-металлического электрода.
- •Электроды второго рода.
- •Хлорсеребряный электрод.
- •Окислительно – восстановительные (redox) системы.
- •Водородный электрод.
- •Хингидронный электрод.
- •Мембранный потенциал или потенциал Донана.
- •Методы изучения двойного электрического слоя.
- •Модельные представления о строении двойного электрического слоя.
- •Форма поляризационной кривой при наличии стадии массопереноса.
- •Лекция 11 Теория замедленного разряда.
- •Свойства уравнения теории замедленного разряда.
- •Лекция 12 Поляризация (перенапряжение) при образовании новой фазы. Перенапряжение при лимитирующей стадии образования двумерных и трёхмерных зародышей.
- •Перенапряжение поверхностной диффузии при электроосаждении металлов.
- •Перенапряжение образования пузырьков газа и связь размеров пузырьков с потенциалом.
- •Предельные токи при электроосаждении. Эффект м.А.Лошкарёва.
- •Электрические процессы в условиях медленной гомогенной химической реакции.
- •Критерии определения природы лимитирующейстадии.
- •Лекция 14 Примеры механизмов некоторых электрохимических реакций.
- •Примеры механизмов различных электрохимических реакций. Реакция выделения водорода (водородный электрод).
- •Кинетическая теория коррозии.
- •Коррозия при кислородной деполяризации.
- •Роль локальных элементов в возникновении коррозии и достижении её скорости.
- •Методы защиты от коррозии.
- •Пассивность металлов.
- •Электрохимическая размерная обработка металлов и сплавов
- •Основы прикладной электрохимии и электрохимических технологий Лекция 1 Основные особенности электрохимических технологий.
- •Конструктивные принципы электрохимических реакторов
- •Межэлектродный зазор
- •Токовые нагрузки
- •Сепараторы
- •Подвод и отвод компонентов реакции
- •Корректировка состава электролита
- •Масштабный фактор
- •Подбор коррозионностойких материалов
- •Экономические показатели
- •Классификация основных процессов переноса при химической и электрохимической технологии
- •Лекция 2. Распределение тока и рассеивающая способность электролитов Распределение тока. Виды распределения тока. Параметр Вагнера. Рассеивающая (локализующая) способность электролитов
- •Первичное распределение тока.
- •Вторичное распределение тока.
- •Третичное распределение тока.
- •Распределение тока при высоких плотностях тока (при наличии поверхностного тепловыделения)
- •Распределение скоростей осаждения или растворения при наличии зависимости выхода по току от плотности тока
- •Методы расчёта распределения тока.
- •Методы экспериментального определения рассеивающей (локализующей) способности электролита
- •Лекция 3. Химические источники тока (хит). Основные характеристики хит
- •Лекция 4 Первичные хит (хит первого рода, элементы)
- •Сухие марганцево-цинковые (мц) элементы
- •Первичные хит с магниевыми и литиевыми анодами
- •Первичные хит с литиевыми анодами
- •Хит с твердым электролитом
- •Лекция 5 Вторичные хит (аккумуляторы).
- •Свинцовые кислотные аккумуляторы
- •Основные неисправности свинцовых кислотных аккумуляторов.
- •Щелочные аккумуляторы
- •Лекция 6 Топливные элементы.
- •Лекция 7. Электролиз водных растворов без выделения металлов Производство водорода и кислорода
- •Производство тяжелой воды
- •Интенсификация электрохимических методов получения водорода
- •Лекция 8. Электрохимическое производство хлора, щелочи и гипохлотрта натрия
- •Теоретические основы электролиза растворов хлоридов
- •Электролиз с твердым катодом и фильтрующей диафрагмой
- •Электролиз с ртутным катодом.
- •Перспективы развития хлорной промышленности
- •Электросинтез гипохлорита натрия
- •Лекция 9 Электрохимические покрытия металлами и сплавами. Теоретические основы.
- •Два метода нанесения покрытий при электролизе
- •Назначение металлических покрытий металлами и сплавами
- •Управление свойствами и размерами покрытий
- •Использование нестационарного электролиза
- •Лекция 10 Электролитическое осаждение железа.
- •Катодный процесс при электроосаждении железа.
- •Электролиты железнения и режимы электролиза
- •Анодный процесс.
- •Лекция 11. Хромирование. Свойства и области применения хромовых покрытий
- •Некоторые особенности процесса хромирования
- •Электролиты и режимы электролиза.
- •Физико-механические свойства хромовых покрытий
- •Лекция 12. Меднение Область применения
- •Сравнительная характеристика медных электролитов.
- •Борфтористоводородные электролиты
- •Цианистые электролиты
- •Пирофосфатные электролиты
- •Лекция 13. Анодная и химическая обработка металлов Оксидирование
- •Электрохимическое и химическое полирование
- •Лекция 14. Электролиз расплавов. Общие сведения.
- •Строение расплавленных солей
- •Электропроводность расплавленных солей
- •Выход по току и удельный расход энергии при электролизе расплавов
- •Влияние физико-химических свойств электролита на процесс электролиза
- •Некоторые специфические явления при электролизе расплавов
- •Лекция 15. Производство алюминия
- •Переработка алюминиевых руд
- •Получение криолита
- •Электроды и другие материалы
- •Электролиз криолит-глиноземного расплава
- •Состав электролита
- •Конструкция и эксплуатация электролизеров
- •Рафинирование алюминия
- •Электролиз хлорида алюминия
- •Лекция 16. Гидроэлектрометаллургия
- •Лекция 17. Электролиз в металлургии благородных металлов
- •Вопросы для самопроверки, задачи и упражнения
- •Заключение Основные направления современного этапа развития электрохимии и электрохимических технологий
- •Литература
Электролиты железнения и режимы электролиза
Для получения железных покрытий используют в основном сульфатные, хлоридные и борфторидные электролиты. Они подразделяются на горячие (80 – 100С) и холодные (20 - 50С).
Таблица 10.1
Составы электролитов и режимы железнения
Состав электролита и параметры электролиза |
Номера электролитов | |||
1 |
2 |
3 |
4 | |
Содержание компонента, г (на 1 л раствора): FeSO47H2O |
400-450 |
- |
- |
- |
FeCl24H2O |
- |
200-250 |
600-650 |
250-300 |
Al2(SO4)318H2O |
100-120 |
- |
100-120 |
- |
NaCl |
- |
- |
- |
90-100 |
KCl |
- |
100-120 |
- |
- |
K2SO4 |
- |
- |
20-30 |
- |
MnCl2 |
- |
- |
20-30 |
- |
HCl |
1 - 1,5 |
2 -3 |
- |
2 -3 |
Аскорбиновая кислота |
- |
- |
0,3 - 0,5 |
- |
рН |
1,7 – 1,6 |
- |
2,3 |
- |
Температура, С |
18 - 40 |
60 - 70 |
20 - 40 |
70 - 80 |
Катодная плотность тока, А/дм2 |
5 - 20 |
10 - 40 |
10 - 30 |
10 - 40 |
Из горячего сульфатногоэлектролита получают хрупкие осадки с большими внутренними напряжениями, в то же время изхлоридногопри такой же температуре – пластичные. Учитывая это обстоятельство, железнение в сульфатных растворах ведут при температурах близких к комнатной, что способствует также снижению возможности окисления двухвалентных ионов железа до трехвалентных и стабилизирует работу электролита. С увеличением концентрации железа и рНв хлоридном электролите внутренние напряжения в осадках уменьшаются.
Наиболее широкое применение для железнения получили хлоридныеэлектролиты, благодаря хорошему качеству формируемых покрытий и сравнительно большой скорости их наращивания.
Чем выше плотность тока и температура электролита, тем ниже должно быть значение рН. Недостаток кислоты приводит к появлению в растворе гидроксида железа, который, включаясь в осадок, придает ему хрупкость. Не следует допускать избытка кислоты, т.к. это вызывает снижение выхода металла по току. При железнении необходимо поддерживатьрНв установленном диапазоне.
В горячих электролитах, работающих при температуре 80 – 100С и выше, значение водородного показателя должно быть 1 – 2. Для поддержания такой кислотности в электролит добавляют соответствующую кислоту. В хлоридных электролитах, работающих прирН> 2 и температуре 18 – 20С для поддержания требуемой кислотности иногда применяют добавки сульфата аммония, алюминия, марганца, придающие буферные свойства раствору. Введение аскорбиновой кислоты затрудняет окисление ионов железа (II) в сульфатных растворах прирНоколо 4.
Значение выхода по току железа связано с температурой электролита и концентрацией в нем солей железа. В этом отношении преимущества имеют растворы на основе хлорида железа – растворимость его выше, чем сульфата, и еще более увеличивается, т.к. процесс ведут при повышенных температурах. Нагрев до 80 – 90 С позволяет реализовать процесс при высоких плотностях тока. Выход по току составляет 80 – 90 %. Для всех электролитов железнения он почти не зависит от плотности тока, но увеличивается с повышением температуры.
Хлористые и сернокислые электролиты имеют свои преимущества и недостатки. Хлористые электролиты производительны, но склонны к окислению кислородом воздуха, обладают недостаточной буферной емкостью. Сернокислые растворы наиболее устойчивы к окислению, могут работать при низких температурах, но допустимые плотности тока небольшие, обладают меньшей производительностью, из них трудно получить плотные осадки железа с надежной прочностью сцепления при плотности более 15 А/дм2.
На практике применяют смешанныеэлектролиты, с содержанием (г/л):FeSO4·7H2O– 200;FeCl2·4H2O– 200. Эти электролиты хорошо работают при:pH= 1 – 1,5,t= 20 – 60C,ik= 15 – 40 А/дм2. Они более стойкие к окислению, чем хлоридные и производительнее сульфатных.
Борфторидныеэлектролиты по сравнению с сульфатными и хлоридными меньше поддаются окислению и поэтому более стабильны. Обладают хорошими буферными свойствами. Благодаря довольно большой растворимости борфторида железа, концентрация его в растворе может быть высокой, что позволяет вести процесс при более высокой плотности тока, чем в сульфатных и в хлоридных электролитах при одинаковой температуре.
Борфторидный электролит содержит (г/л): 85 – 90 Fe(BF4)2 (в пересчете на металл), 35 – 40NaCl, 10 – 15H3BO3, 0,4 – 1 добавкиKCl,рН2,2 – 2,5. Режим железнения:t= 60 ÷ 650C,ik= 2 ÷ 5 А/дм2.
Значительный практический интерес представляют электролитические сплавыжелеза с цинком, никелем, марганцем, рядом других металлов, а также с углеродом. В последнем случае в хлоридный электролит добавляют 60 г/л глицерина и 30 - 40 г/л сахара. Получаемые осадки содержат до 0,6% углерода и могут подвергаться термообработке – отжигу, закалке.
Сплавы Fe-Znв зависимости от их состава, можно использовать для получения осадков большой толщины, что необходимо в гальванопластике или в качестве антикоррозийного покрытия.Соответствующие составы электролитовпредставлены в табл. 10.2.
Таблица 10.2
Содержание компонентов электролитов (г/л): |
Электролит 1 |
Электролит 2 |
Fe(BF4) в пересчете на металл |
52 |
47 – 49 |
Zn(BF4)2в пересчете на металл |
4,6 |
8 - 11 |
NH4Cl |
40 |
40 |
H3BO3 |
10 |
10 |
хромоксан (рН= 1,0) |
1 |
1 |
В обоих случаях рН= 1,0, температура 50С, катодная плотность тока 5 и 2 А/дм2соответственно.
В электролите 1 формируются покрытия, содержащие около 75% железа. Защитные свойства сплава, включающего 10 – 17% железа, полученного в электролите 2 не уступают и даже нисколько превосходят свойства цинковых покрытий.