
- •Основы электрохимии и электрохимических технологий
- •Введение
- •Окислительно-восстановительные реакции.
- •Правила уравнивания окислительно-восстановительных реакций.
- •Порядок уравнивания окислительно-восстановительных реакций, т.Е. Приведение их в форму, обеспечивающую закон сохранения энергии (баланс массы и заряда).
- •Демонстрация переноса электронов в окислительно-восстановительных реакциях. Гальванический элемент.
- •Лекция 2. Законы Фарадея и скорость электрохимического процесса Выход по току. Применение закона Фарадея к расчету скорости обработки металлов.
- •Скорость электрохимической обработки
- •Электрохимический эквивалент сплава и практический электрохимический эквивалент.
- •Лекция 3. Равновесный потенциал электрода Электрод, ячейка. Напряжение электрода и ячейки. Равновесный потенциал. Виды равновесных потенциалов.
- •Равновесный потенциал.
- •Виды равновесных потенциалов.
- •Лекция 4. Основы теории электролитической диссоциации Равновесные явления в растворах электролитов. Теория электролитической диссоциации. Ион - дипольное и ион - ионное взаимодействие в электролитах.
- •Теория Дюбая – Гюккеля и ион - ионное взаимодействие в растворах электролитов.
- •Гидролиз солей.
- •Буферные растворы.
- •Ионные равновесия при растворении. Произведение растворимости.
- •Лекция 6 Электропроводность электролитов
- •Экспериментальное определение электропроводности.
- •Особые случаи электропроводности электролитов.
- •Электроды первого рода. Потенциал ионно-металлического электрода.
- •Электроды второго рода.
- •Хлорсеребряный электрод.
- •Окислительно – восстановительные (redox) системы.
- •Водородный электрод.
- •Хингидронный электрод.
- •Мембранный потенциал или потенциал Донана.
- •Методы изучения двойного электрического слоя.
- •Модельные представления о строении двойного электрического слоя.
- •Форма поляризационной кривой при наличии стадии массопереноса.
- •Лекция 11 Теория замедленного разряда.
- •Свойства уравнения теории замедленного разряда.
- •Лекция 12 Поляризация (перенапряжение) при образовании новой фазы. Перенапряжение при лимитирующей стадии образования двумерных и трёхмерных зародышей.
- •Перенапряжение поверхностной диффузии при электроосаждении металлов.
- •Перенапряжение образования пузырьков газа и связь размеров пузырьков с потенциалом.
- •Предельные токи при электроосаждении. Эффект м.А.Лошкарёва.
- •Электрические процессы в условиях медленной гомогенной химической реакции.
- •Критерии определения природы лимитирующейстадии.
- •Лекция 14 Примеры механизмов некоторых электрохимических реакций.
- •Примеры механизмов различных электрохимических реакций. Реакция выделения водорода (водородный электрод).
- •Кинетическая теория коррозии.
- •Коррозия при кислородной деполяризации.
- •Роль локальных элементов в возникновении коррозии и достижении её скорости.
- •Методы защиты от коррозии.
- •Пассивность металлов.
- •Электрохимическая размерная обработка металлов и сплавов
- •Основы прикладной электрохимии и электрохимических технологий Лекция 1 Основные особенности электрохимических технологий.
- •Конструктивные принципы электрохимических реакторов
- •Межэлектродный зазор
- •Токовые нагрузки
- •Сепараторы
- •Подвод и отвод компонентов реакции
- •Корректировка состава электролита
- •Масштабный фактор
- •Подбор коррозионностойких материалов
- •Экономические показатели
- •Классификация основных процессов переноса при химической и электрохимической технологии
- •Лекция 2. Распределение тока и рассеивающая способность электролитов Распределение тока. Виды распределения тока. Параметр Вагнера. Рассеивающая (локализующая) способность электролитов
- •Первичное распределение тока.
- •Вторичное распределение тока.
- •Третичное распределение тока.
- •Распределение тока при высоких плотностях тока (при наличии поверхностного тепловыделения)
- •Распределение скоростей осаждения или растворения при наличии зависимости выхода по току от плотности тока
- •Методы расчёта распределения тока.
- •Методы экспериментального определения рассеивающей (локализующей) способности электролита
- •Лекция 3. Химические источники тока (хит). Основные характеристики хит
- •Лекция 4 Первичные хит (хит первого рода, элементы)
- •Сухие марганцево-цинковые (мц) элементы
- •Первичные хит с магниевыми и литиевыми анодами
- •Первичные хит с литиевыми анодами
- •Хит с твердым электролитом
- •Лекция 5 Вторичные хит (аккумуляторы).
- •Свинцовые кислотные аккумуляторы
- •Основные неисправности свинцовых кислотных аккумуляторов.
- •Щелочные аккумуляторы
- •Лекция 6 Топливные элементы.
- •Лекция 7. Электролиз водных растворов без выделения металлов Производство водорода и кислорода
- •Производство тяжелой воды
- •Интенсификация электрохимических методов получения водорода
- •Лекция 8. Электрохимическое производство хлора, щелочи и гипохлотрта натрия
- •Теоретические основы электролиза растворов хлоридов
- •Электролиз с твердым катодом и фильтрующей диафрагмой
- •Электролиз с ртутным катодом.
- •Перспективы развития хлорной промышленности
- •Электросинтез гипохлорита натрия
- •Лекция 9 Электрохимические покрытия металлами и сплавами. Теоретические основы.
- •Два метода нанесения покрытий при электролизе
- •Назначение металлических покрытий металлами и сплавами
- •Управление свойствами и размерами покрытий
- •Использование нестационарного электролиза
- •Лекция 10 Электролитическое осаждение железа.
- •Катодный процесс при электроосаждении железа.
- •Электролиты железнения и режимы электролиза
- •Анодный процесс.
- •Лекция 11. Хромирование. Свойства и области применения хромовых покрытий
- •Некоторые особенности процесса хромирования
- •Электролиты и режимы электролиза.
- •Физико-механические свойства хромовых покрытий
- •Лекция 12. Меднение Область применения
- •Сравнительная характеристика медных электролитов.
- •Борфтористоводородные электролиты
- •Цианистые электролиты
- •Пирофосфатные электролиты
- •Лекция 13. Анодная и химическая обработка металлов Оксидирование
- •Электрохимическое и химическое полирование
- •Лекция 14. Электролиз расплавов. Общие сведения.
- •Строение расплавленных солей
- •Электропроводность расплавленных солей
- •Выход по току и удельный расход энергии при электролизе расплавов
- •Влияние физико-химических свойств электролита на процесс электролиза
- •Некоторые специфические явления при электролизе расплавов
- •Лекция 15. Производство алюминия
- •Переработка алюминиевых руд
- •Получение криолита
- •Электроды и другие материалы
- •Электролиз криолит-глиноземного расплава
- •Состав электролита
- •Конструкция и эксплуатация электролизеров
- •Рафинирование алюминия
- •Электролиз хлорида алюминия
- •Лекция 16. Гидроэлектрометаллургия
- •Лекция 17. Электролиз в металлургии благородных металлов
- •Вопросы для самопроверки, задачи и упражнения
- •Заключение Основные направления современного этапа развития электрохимии и электрохимических технологий
- •Литература
Анодный процесс.
Анодами при железнении служит железо типа Армко или малоуглеродистая сталь, содержащая до 0,2% углерода. В последнем случае имеет место обильное выделение шлама, что неблагоприятно сказывается на качестве покрытий. Поэтому аноды помещают в чехлы из кислостойкой стеклянной ткани.
Анодная плотность тока в электролитах при невысокой температуре 5 – 10 А/дм2, в горячих растворах – до 15 А/дм2. При содержании в растворе 300 – 350 г/лFeCl2·4H2Oкатодный и анодный выход по току близки, в других случаях анодный выход металла по току превышает катодный.
В технологическом процессе железнения следует предусмотреть операцию предварительного активирования обрабатываемых деталей в течение 30 – 60 с в растворе, содержащем 350 – 370 г/л H2SO4при 18 – 30С и плотности тока 40 – 60 А/дм2для углеродистой стали и 15 – 20 А/дм2для чугуна. После такой обработки детали должны быть тщательно промыты для удаления следов кислоты.
Физико-технические свойства железных покрытий.
Эксплуатационные характеристики железных покрытий характеризуются в основном твердостью, прочностью их сцепления с подложкой, износостойкостью и усталостной прочностью восстановленных деталей машин. Эти свойства являются следствием формирования определенной структуры покрытий и зависят от физико-химической природы осаждаемого металла. Структура электроосажденных металлов в большой степени зависит от величины катодной поляризации. Характер изменения последней и ее величина зависят от условий электролиза. Следовательно, управляя условиями электролиза можно изменять структуру и физико-механические свойства осажденных слоев.
Свойства железных покрытий существенно изменяются с условиями электролиза. Микротвердость понижается с повышением температуры, величины рНэлектролита и увеличивается с ростом плотности тока. При нагревании осадки становятся пластичными. Микротвердость железных покрытий, полученных при оптимальных условиях, достигает 6500 – 7000 МПа, но при повышенной температуре и пониженной плотности тока она составляет 1400 – 1500 МПа.
На физико-механические свойства железных осадков влияют концентрация соли железа и свободной кислоты в растворе. При получении толстых слоев железа (0,1 – 0,5 мм) при высоких плотностях тока (от 10 – 102А/дм2(0,1 – 1 А/см2) и выше) было показано, что с увеличением концентрации хлорида железа (II)в подкисленном растворе (до 0,1 н.HCl) при температуре 100С катодные осадки получаются более мягкими и выдерживают большое число перегибов (на 180) до излома. Для получения компактных толстых гальванических покрытий (0,2 – 0,5 мм) осадков железа количествоFeCl2·4H2O в растворе должно быть 690 – 790 г/л (7 – 8 н) при содержанииHCl3 – 4 г/л (0,1 н). Температура электролита 100 – 105С. Плотность тока – (10 – 20)·102А/дм2. При концентрации хлорида железа (II)400 г/л (≈ 4 н) толстые гальванические осадки железа растрескиваются.
С увеличением содержания кислоты осадки железа становятся более мягкими и гибкими – твердость снижается, число перегибов возрастает. Удлинение (68%) при испытании на разрыв увеличиваются, сопротивление же разрыву уменьшается.
Твердость зависит от содержания в покрытии растворенного водорода. При нагревании до 300С происходит частичное удаление водорода, не вошедшего в кристаллическую решетку железа, что сопровождается повышением микротвердости осадка. Дальнейшее увеличение температуры приводит к снижению микротвердости, что, по-видимому, связано с более глубокой адсорбцией водорода.
Осадки железа, как из холодных, так и горячих электролитов, получаются плотными, мелкозернистыми. В зависимости от температуры и плотности тока, они могут быть твердыми или мягкими. Чем выше плотность тока, тем при прочих равных условиях больше твердость осадков. При увеличении температуры твердость осадков уменьшается, зато увеличивается их пластичность.
Микротвердость осадков, полученных из сульфатного электролита, 350 – 450 МПа, из хлоридного 500 – 600 МПа. Повышение твердости до 700 – 780 МПа и износостойкости покрытий достигнуто при использовании электролита, содержащего 400 г/л FeCl2·4H2Oи 1 – 2 г/л аскорбиновой кислоты,рН0,5 – 1,0;t= 25 – 35С;ik= 10 ÷ 50 А/дм2; выход металла по току 90 – 98%.
Для ремонтного производства необходимо обеспечить надежную прочность сцепления с чугунными и стальными деталями. Прочность сцепления зависит от подготовки поверхности детали перед покрытием, структуры подложки, начальных условий электролиза. Для получения прочносцепленных железных покрытий проводят анодную обработку деталей в 30% H2SO4при анодной плотности тока 40 – 100 А/дм2.
Максимальной износостойкостью обладают железные покрытия с твердостью 500 – 580 кГ/мм2. Практика показывает, что детали, восстановленные электролитическим железом, обладают повышенной износостойкостью (в 2,2 – 3 раза) по сравнению с новыми.
Усталостная прочность деталей, подвергнутых железнению, определяется составом электролита и режимами электролиза. Но как бы ни изменялись условия электролиза, невозможно получить железные покрытия, усталостная прочность которых, была бы равна усталостной прочности закаленной среднеуглеродистой стали.
Поэтому используют дополнительные технологические приемы, обеспечивающие снятие части внутренних напряжений и тем самым повышающие усталостную прочность покрытий. Таким приемом является отпуск железных покрытий при температуре 200 – 300С в течение 1 – 2 часов, что позволяет повысить усталостную прочность на 10 – 20 %.