
- •Основы электрохимии и электрохимических технологий
- •Введение
- •Окислительно-восстановительные реакции.
- •Правила уравнивания окислительно-восстановительных реакций.
- •Порядок уравнивания окислительно-восстановительных реакций, т.Е. Приведение их в форму, обеспечивающую закон сохранения энергии (баланс массы и заряда).
- •Демонстрация переноса электронов в окислительно-восстановительных реакциях. Гальванический элемент.
- •Лекция 2. Законы Фарадея и скорость электрохимического процесса Выход по току. Применение закона Фарадея к расчету скорости обработки металлов.
- •Скорость электрохимической обработки
- •Электрохимический эквивалент сплава и практический электрохимический эквивалент.
- •Лекция 3. Равновесный потенциал электрода Электрод, ячейка. Напряжение электрода и ячейки. Равновесный потенциал. Виды равновесных потенциалов.
- •Равновесный потенциал.
- •Виды равновесных потенциалов.
- •Лекция 4. Основы теории электролитической диссоциации Равновесные явления в растворах электролитов. Теория электролитической диссоциации. Ион - дипольное и ион - ионное взаимодействие в электролитах.
- •Теория Дюбая – Гюккеля и ион - ионное взаимодействие в растворах электролитов.
- •Гидролиз солей.
- •Буферные растворы.
- •Ионные равновесия при растворении. Произведение растворимости.
- •Лекция 6 Электропроводность электролитов
- •Экспериментальное определение электропроводности.
- •Особые случаи электропроводности электролитов.
- •Электроды первого рода. Потенциал ионно-металлического электрода.
- •Электроды второго рода.
- •Хлорсеребряный электрод.
- •Окислительно – восстановительные (redox) системы.
- •Водородный электрод.
- •Хингидронный электрод.
- •Мембранный потенциал или потенциал Донана.
- •Методы изучения двойного электрического слоя.
- •Модельные представления о строении двойного электрического слоя.
- •Форма поляризационной кривой при наличии стадии массопереноса.
- •Лекция 11 Теория замедленного разряда.
- •Свойства уравнения теории замедленного разряда.
- •Лекция 12 Поляризация (перенапряжение) при образовании новой фазы. Перенапряжение при лимитирующей стадии образования двумерных и трёхмерных зародышей.
- •Перенапряжение поверхностной диффузии при электроосаждении металлов.
- •Перенапряжение образования пузырьков газа и связь размеров пузырьков с потенциалом.
- •Предельные токи при электроосаждении. Эффект м.А.Лошкарёва.
- •Электрические процессы в условиях медленной гомогенной химической реакции.
- •Критерии определения природы лимитирующейстадии.
- •Лекция 14 Примеры механизмов некоторых электрохимических реакций.
- •Примеры механизмов различных электрохимических реакций. Реакция выделения водорода (водородный электрод).
- •Кинетическая теория коррозии.
- •Коррозия при кислородной деполяризации.
- •Роль локальных элементов в возникновении коррозии и достижении её скорости.
- •Методы защиты от коррозии.
- •Пассивность металлов.
- •Электрохимическая размерная обработка металлов и сплавов
- •Основы прикладной электрохимии и электрохимических технологий Лекция 1 Основные особенности электрохимических технологий.
- •Конструктивные принципы электрохимических реакторов
- •Межэлектродный зазор
- •Токовые нагрузки
- •Сепараторы
- •Подвод и отвод компонентов реакции
- •Корректировка состава электролита
- •Масштабный фактор
- •Подбор коррозионностойких материалов
- •Экономические показатели
- •Классификация основных процессов переноса при химической и электрохимической технологии
- •Лекция 2. Распределение тока и рассеивающая способность электролитов Распределение тока. Виды распределения тока. Параметр Вагнера. Рассеивающая (локализующая) способность электролитов
- •Первичное распределение тока.
- •Вторичное распределение тока.
- •Третичное распределение тока.
- •Распределение тока при высоких плотностях тока (при наличии поверхностного тепловыделения)
- •Распределение скоростей осаждения или растворения при наличии зависимости выхода по току от плотности тока
- •Методы расчёта распределения тока.
- •Методы экспериментального определения рассеивающей (локализующей) способности электролита
- •Лекция 3. Химические источники тока (хит). Основные характеристики хит
- •Лекция 4 Первичные хит (хит первого рода, элементы)
- •Сухие марганцево-цинковые (мц) элементы
- •Первичные хит с магниевыми и литиевыми анодами
- •Первичные хит с литиевыми анодами
- •Хит с твердым электролитом
- •Лекция 5 Вторичные хит (аккумуляторы).
- •Свинцовые кислотные аккумуляторы
- •Основные неисправности свинцовых кислотных аккумуляторов.
- •Щелочные аккумуляторы
- •Лекция 6 Топливные элементы.
- •Лекция 7. Электролиз водных растворов без выделения металлов Производство водорода и кислорода
- •Производство тяжелой воды
- •Интенсификация электрохимических методов получения водорода
- •Лекция 8. Электрохимическое производство хлора, щелочи и гипохлотрта натрия
- •Теоретические основы электролиза растворов хлоридов
- •Электролиз с твердым катодом и фильтрующей диафрагмой
- •Электролиз с ртутным катодом.
- •Перспективы развития хлорной промышленности
- •Электросинтез гипохлорита натрия
- •Лекция 9 Электрохимические покрытия металлами и сплавами. Теоретические основы.
- •Два метода нанесения покрытий при электролизе
- •Назначение металлических покрытий металлами и сплавами
- •Управление свойствами и размерами покрытий
- •Использование нестационарного электролиза
- •Лекция 10 Электролитическое осаждение железа.
- •Катодный процесс при электроосаждении железа.
- •Электролиты железнения и режимы электролиза
- •Анодный процесс.
- •Лекция 11. Хромирование. Свойства и области применения хромовых покрытий
- •Некоторые особенности процесса хромирования
- •Электролиты и режимы электролиза.
- •Физико-механические свойства хромовых покрытий
- •Лекция 12. Меднение Область применения
- •Сравнительная характеристика медных электролитов.
- •Борфтористоводородные электролиты
- •Цианистые электролиты
- •Пирофосфатные электролиты
- •Лекция 13. Анодная и химическая обработка металлов Оксидирование
- •Электрохимическое и химическое полирование
- •Лекция 14. Электролиз расплавов. Общие сведения.
- •Строение расплавленных солей
- •Электропроводность расплавленных солей
- •Выход по току и удельный расход энергии при электролизе расплавов
- •Влияние физико-химических свойств электролита на процесс электролиза
- •Некоторые специфические явления при электролизе расплавов
- •Лекция 15. Производство алюминия
- •Переработка алюминиевых руд
- •Получение криолита
- •Электроды и другие материалы
- •Электролиз криолит-глиноземного расплава
- •Состав электролита
- •Конструкция и эксплуатация электролизеров
- •Рафинирование алюминия
- •Электролиз хлорида алюминия
- •Лекция 16. Гидроэлектрометаллургия
- •Лекция 17. Электролиз в металлургии благородных металлов
- •Вопросы для самопроверки, задачи и упражнения
- •Заключение Основные направления современного этапа развития электрохимии и электрохимических технологий
- •Литература
Электрические процессы в условиях медленной гомогенной химической реакции.
Понимание и описание подобных процессов является более сложной задачей по сравнению с описанной выше, поскольку наряду с учетом скорости химической реакции необходимо рассмотрение диффузии.
Первой количественной теорией медленной гомогенной химической реакции была модель Р. Брдички и К. Визнера (1947 г., концепция т.н. реакционного слоя).
Рассмотрим реакцию:
(13.ж)
Предполагается, что замедленной является предшествующая гомогенная реакция с константами скорости прямого k1и обратногоk2процессов.
Предполагается, что существует градиент
концентрации вещества А(вследствие
замедленной химической реакции), а на
поверхности присутствует некий слой
толщиной,
в котором поверхностная концентрация
вещества А постоянная. При
наблюдается изменение концентрации
веществаА. Слой толщиной
называется реакционным слоем. Среднее
время жизни частицыOxв реакционном слое равно:
(13.15)
Рис. 13.2 Концентрационный профиль при замедленности предшествующей гомогенной химической реакции (концепция реакционного слоя).
Тогда согласно формуле А.Эйнштейна за это время частица может пройти расстояние равное:
(13.16)
Учитывая что
, (13.17)
получаем
, (13.18)
а зависимость перенапряжения от плотности тока имеет вид
, (13.19)
где:
. (13.20)
Критерии определения природы лимитирующейстадии.
Из рассмотренных выше особенностей протекания электрохимических реакций в зависимости от перенапряжения и плотности тока, можно выделить следующие критерии определения природы лимитирующей стадии:
1. зависимость скорости реакции от перемешивания (скорости вращения дискового электрода, цилиндрического и др.); наличие соответствующей зависимости однозначно указывают на замедленность стадии массопереноса.
2. определение наклонов поляризационных кривых;
3. определение коэффициента переноса
и его зависимости от плотности тока
(потенциала);
4. определение числа электронов суммарной электрохимической реакции;
5. определение конечных продуктов реакции;
6. определение плотности тока обмена и его зависимости от концентрации вещества;
7. прямое определение промежуточных продуктов реакции;
8. определение порядка реакции.
Определение этих параметров (частично или полностью) позволяет определить природу лимитирующей стадии, а также механизм реакции.
Вопросы и упражнения к лекциям 9 – 13
При определении зависимости плотности предельного тока от скорости вращения дискового электрода получены следующие значения плотностей токов i(мА/см2) при соответствующих скоростях вращения (об/мин): 2,7 – 500; 3,2 – 700; 3,8 – 1000; 4,7 – 1500. Какой тип предельного тока наблюдается в рассмотренном случае и чем он может быть обусловлен?
С чем могут быть связаны хаотические осцилляции плотности предельного диффузионного тока и чем могут быть обусловлены регулярные осцилляции плотности предельного диффузионного тока?
С чем связано изменение диффузионного тока при изменении концентрации индифферентного электролита в тех случаях, когда концентрация электроактивного компонента остается постоянной?
В каких случаях плотность предельного диффузионного тока будет зависеть от геометрических размеров электрода, и в каких она от них зависеть не будет?
Можно ли и каким образом получить значение плотности тока при бесконечно большой скорости вращения электрода? Какому процессу будет соответствовать полученные подобным образом значение плотности тока?
Определите графически плотность тока обмена выделения водорода на металле, если перенапряжение этой электрохимической реакции при плотности тока 1 А/см2равно 0,4 В, а тафелевский наклон равен 100 мВ/порядок.
Определите графически, каков будет потенциал (относительно насыщенного хлорсеребряного электрода) анодного растворения Feв растворе его собственной соли (Fe→Fe+2+ 2
) при концентрации соли железа 0,1 моль/л и плотности тока 1 А/см2, если величина плотности тока обмена для этой реакции равна 10-7А/см2, тафелевский наклон равен 50 мВ/порядок.
При увеличении скорости вращения дискового электрода предельный ток катодного осаждения металла не изменился. Чем было вызвано его достижение? (Приведите все возможные варианты).
Определите графически, каков будет потенциал водородного электрода на платине (относительно нормального водородного электрода) при плотности тока 1 А/см2, если тафелевский наклон для этой реакции равен 100 мВ/порядок. Уменьшится или увеличится потенциал при той же плотности тока, если выделение водорода с тем же тафелевским наклоном будет происходить на ртути?
Известно, что перенапряжение катодного осаждения никеля из раствора его соли определяется диффузионными (концентрационными) ограничениями. Определите величину потенциала (относительно нормального водородного электрода) при плотности тока 10-1А/см2, если величина предельного диффузионного тока равна 0,5 А/см2.
Определите графически, каков будет потенциал (относительно нормального водородного электрода) анодного растворения меди в растворе ее собственной соли (Cu→Cu+2+ 2
) при концентрации соли меди 1 г-ион/л, плотности тока 0,1 А/см2, если величина плотности тока обмена для этой реакции равна 10-5А/см2, а тафелевский наклон равен 100 мВ/порядок.
Определите графически плотность тока обмена выделения водорода на металле, если при плотности тока 10-3А/см2величина его потенциала (относительно нормального водородного электрода) равна –0,25 В, а величина тафелевского наклона равна 50 мВ/порядок.
Для двух различных электрохимических систем токи обмена различаются на 2 порядка (в 100 раз). Чему будет равно перенапряжение более медленной реакции (при малых перенапряжениях), если перенапряжение более быстрой при этой же плотности тока равно 0,01 В.
Объясните почему для использования в качестве электродов сравнения применяются электрохимические системы (реакции) с высокой плотностью тока обмена.
Перечислите преимущества и недостатки потенциостатического (потенциодинамического) и гальваностатического (гальванодинамического) методов получения поляризационной кривой. В каких случаях объективные данные дает каждый из них?