
- •Основы электрохимии и электрохимических технологий
- •Введение
- •Окислительно-восстановительные реакции.
- •Правила уравнивания окислительно-восстановительных реакций.
- •Порядок уравнивания окислительно-восстановительных реакций, т.Е. Приведение их в форму, обеспечивающую закон сохранения энергии (баланс массы и заряда).
- •Демонстрация переноса электронов в окислительно-восстановительных реакциях. Гальванический элемент.
- •Лекция 2. Законы Фарадея и скорость электрохимического процесса Выход по току. Применение закона Фарадея к расчету скорости обработки металлов.
- •Скорость электрохимической обработки
- •Электрохимический эквивалент сплава и практический электрохимический эквивалент.
- •Лекция 3. Равновесный потенциал электрода Электрод, ячейка. Напряжение электрода и ячейки. Равновесный потенциал. Виды равновесных потенциалов.
- •Равновесный потенциал.
- •Виды равновесных потенциалов.
- •Лекция 4. Основы теории электролитической диссоциации Равновесные явления в растворах электролитов. Теория электролитической диссоциации. Ион - дипольное и ион - ионное взаимодействие в электролитах.
- •Теория Дюбая – Гюккеля и ион - ионное взаимодействие в растворах электролитов.
- •Гидролиз солей.
- •Буферные растворы.
- •Ионные равновесия при растворении. Произведение растворимости.
- •Лекция 6 Электропроводность электролитов
- •Экспериментальное определение электропроводности.
- •Особые случаи электропроводности электролитов.
- •Электроды первого рода. Потенциал ионно-металлического электрода.
- •Электроды второго рода.
- •Хлорсеребряный электрод.
- •Окислительно – восстановительные (redox) системы.
- •Водородный электрод.
- •Хингидронный электрод.
- •Мембранный потенциал или потенциал Донана.
- •Методы изучения двойного электрического слоя.
- •Модельные представления о строении двойного электрического слоя.
- •Форма поляризационной кривой при наличии стадии массопереноса.
- •Лекция 11 Теория замедленного разряда.
- •Свойства уравнения теории замедленного разряда.
- •Лекция 12 Поляризация (перенапряжение) при образовании новой фазы. Перенапряжение при лимитирующей стадии образования двумерных и трёхмерных зародышей.
- •Перенапряжение поверхностной диффузии при электроосаждении металлов.
- •Перенапряжение образования пузырьков газа и связь размеров пузырьков с потенциалом.
- •Предельные токи при электроосаждении. Эффект м.А.Лошкарёва.
- •Электрические процессы в условиях медленной гомогенной химической реакции.
- •Критерии определения природы лимитирующейстадии.
- •Лекция 14 Примеры механизмов некоторых электрохимических реакций.
- •Примеры механизмов различных электрохимических реакций. Реакция выделения водорода (водородный электрод).
- •Кинетическая теория коррозии.
- •Коррозия при кислородной деполяризации.
- •Роль локальных элементов в возникновении коррозии и достижении её скорости.
- •Методы защиты от коррозии.
- •Пассивность металлов.
- •Электрохимическая размерная обработка металлов и сплавов
- •Основы прикладной электрохимии и электрохимических технологий Лекция 1 Основные особенности электрохимических технологий.
- •Конструктивные принципы электрохимических реакторов
- •Межэлектродный зазор
- •Токовые нагрузки
- •Сепараторы
- •Подвод и отвод компонентов реакции
- •Корректировка состава электролита
- •Масштабный фактор
- •Подбор коррозионностойких материалов
- •Экономические показатели
- •Классификация основных процессов переноса при химической и электрохимической технологии
- •Лекция 2. Распределение тока и рассеивающая способность электролитов Распределение тока. Виды распределения тока. Параметр Вагнера. Рассеивающая (локализующая) способность электролитов
- •Первичное распределение тока.
- •Вторичное распределение тока.
- •Третичное распределение тока.
- •Распределение тока при высоких плотностях тока (при наличии поверхностного тепловыделения)
- •Распределение скоростей осаждения или растворения при наличии зависимости выхода по току от плотности тока
- •Методы расчёта распределения тока.
- •Методы экспериментального определения рассеивающей (локализующей) способности электролита
- •Лекция 3. Химические источники тока (хит). Основные характеристики хит
- •Лекция 4 Первичные хит (хит первого рода, элементы)
- •Сухие марганцево-цинковые (мц) элементы
- •Первичные хит с магниевыми и литиевыми анодами
- •Первичные хит с литиевыми анодами
- •Хит с твердым электролитом
- •Лекция 5 Вторичные хит (аккумуляторы).
- •Свинцовые кислотные аккумуляторы
- •Основные неисправности свинцовых кислотных аккумуляторов.
- •Щелочные аккумуляторы
- •Лекция 6 Топливные элементы.
- •Лекция 7. Электролиз водных растворов без выделения металлов Производство водорода и кислорода
- •Производство тяжелой воды
- •Интенсификация электрохимических методов получения водорода
- •Лекция 8. Электрохимическое производство хлора, щелочи и гипохлотрта натрия
- •Теоретические основы электролиза растворов хлоридов
- •Электролиз с твердым катодом и фильтрующей диафрагмой
- •Электролиз с ртутным катодом.
- •Перспективы развития хлорной промышленности
- •Электросинтез гипохлорита натрия
- •Лекция 9 Электрохимические покрытия металлами и сплавами. Теоретические основы.
- •Два метода нанесения покрытий при электролизе
- •Назначение металлических покрытий металлами и сплавами
- •Управление свойствами и размерами покрытий
- •Использование нестационарного электролиза
- •Лекция 10 Электролитическое осаждение железа.
- •Катодный процесс при электроосаждении железа.
- •Электролиты железнения и режимы электролиза
- •Анодный процесс.
- •Лекция 11. Хромирование. Свойства и области применения хромовых покрытий
- •Некоторые особенности процесса хромирования
- •Электролиты и режимы электролиза.
- •Физико-механические свойства хромовых покрытий
- •Лекция 12. Меднение Область применения
- •Сравнительная характеристика медных электролитов.
- •Борфтористоводородные электролиты
- •Цианистые электролиты
- •Пирофосфатные электролиты
- •Лекция 13. Анодная и химическая обработка металлов Оксидирование
- •Электрохимическое и химическое полирование
- •Лекция 14. Электролиз расплавов. Общие сведения.
- •Строение расплавленных солей
- •Электропроводность расплавленных солей
- •Выход по току и удельный расход энергии при электролизе расплавов
- •Влияние физико-химических свойств электролита на процесс электролиза
- •Некоторые специфические явления при электролизе расплавов
- •Лекция 15. Производство алюминия
- •Переработка алюминиевых руд
- •Получение криолита
- •Электроды и другие материалы
- •Электролиз криолит-глиноземного расплава
- •Состав электролита
- •Конструкция и эксплуатация электролизеров
- •Рафинирование алюминия
- •Электролиз хлорида алюминия
- •Лекция 16. Гидроэлектрометаллургия
- •Лекция 17. Электролиз в металлургии благородных металлов
- •Вопросы для самопроверки, задачи и упражнения
- •Заключение Основные направления современного этапа развития электрохимии и электрохимических технологий
- •Литература
Заключение Основные направления современного этапа развития электрохимии и электрохимических технологий
И электрохимическая наука и электрохимические технологии находятся в постоянном развитии. В учебном пособии представлены только их основы, созданные за более чем двухсотлетнюю историю существования электрохимии как науки, а также некоторые технологии. И как любая наука электрохимия имеет свои «точки роста», интенсивно развивающиеся направления исследований. Наличие их объясняется с одной стороны большим количеством еще нерешенных проблем, а с другой – определяется запросами практики от создания эффективных источников энергии до проблем охраны окружающей среды.
Вот некоторые из них: Квантово-химические методы описания переноса заряда через границу раздела. Несмотря на то, что это направление исследований активно развивается уже более полувека, оно продолжает находиться в центре внимания исследователей по той причине, что окончательного решения проблемы теоретического описания элементарного акта переноса заряда во всем его многообразии и различных условиях нет. А следовательно, электрохимия по-прежнему остается наукой экспериментальной, и в этом отношении все большую роль играетсовершенствование аналитических методов исследования поверхностных процессовс привлечением современных физических и физико-химических методов (исследование процессов in situ, т.е. непосредственно в процессе электрохимического превращения) и на этой основе развитие электрохимического приборостроения.
Электрохимию можно рассматривать как один из разделов материаловедения (получение новых материалов и электрохимические методы исследования их свойств), а, следовательно, развитие методов электрохимического материаловеденияявляется одним из важнейших направлений исследований.
Являясь наукой о поверхностных процессах, электрохимия всегда находилась в центре решения проблем катализа, а именно гетерогенного катализа. Поэтому дальнейшее развитие и описание процессов электрокатализапостоянно находилось и будет находиться в центре внимания электрохимиков.
С интенсификацией любого технологического процесса связана одна из основных задач технологии – создание аппаратов и станков высокой единичной мощности. В связи с этим детальное описание электрохимических процессов при значительном удалении от состояния термодинамического равновесия, исследование новых, нетрадиционных электрохимических процессовдолжно играть важную роль в развитии современной электрохимии. Это направление исследований тесно связано спроблемами самоорганизации в электрохимических системах, поскольку в открытых системах, в которых имеет место перенос массы и энергии при значительном удалении от состояния термодинамического равновесия должны возникать временные, а также пространственные диссипативные структуры. Описание и исследование процессов самоорганизации в электрохимических системах уже сейчас находится в центре внимания как технологов (получение наноструктур), так и специалистов в области биоэлектрохимии.
Биоэлектрохимия как часть науки о жизни – также является одним из основных направлений современной электрохимии.
Развитие этих разделов электрохимической науки тесно связано с развитием электрохимических технологий и в значительной степени определяется тенденциями их совершенствования и создания принципиально новых.
Это, прежде всего создание и промышленное освоение новых, экологически чистых химических источников электрической энергии (электрохимических генераторов, топливных элементов). Для этих целей необходима разработка методов получения топлива, наиболее эффективным из них является водород. Совершенствование и создание новых, в том числе электрохимических методов получения водорода является одной из основных задач современной технологической науки, также как и разработка новых материалов и катализаторов электрохимических процессов. Тесно связана с этой задачейпроблема фотоэлектрохимического разложения воды, в том числе и с использованием принципиально новых материалов.
Развитие электрохимических технологий в значительной степени определяется тем, на каком уровне удается управлять скоростями электрохимических реакций. И одна из основных тенденций – это переход от макро- к микро- и нанотехнологиям, т.е. управления на уровне ансамбля молекул или даже нескольких молекул. Развитие электрохимических нанотехнологий применительно к процессам обработки, получения новых материалов, процессам электрокатализа и борьбы с коррозией – важнейшая тенденция настоящего периода.
Основные недостатки существующих технологий – это их негативное влияние на окружающую среду и высокая энергоемкость. Проблема взаимодействия электрохимии и экологии является двоякой: с одной стороны – это разработка методов, снижающих нагрузку электрохимических технологий на окружающую среду, а с другой – разработка электрохимических методов защиты окружающей среды. Зачастую в настоящих условиях «заказчиком» разработки новых технологий является законодательство, запрещающее проведение тех или иных технологических процессов, как, например, в случае технологии электрохимического хромирования из соединений Cr(VI). Поэтомусовершенствование существующих электрохимических технологий в плане снижения нагрузки на окружающую среду– одно из основных направлений их развития.
Энергообеспечение различных производств постоянно растет, добыча энергоносителей удорожается, разведанные их запасы уменьшаются. Следствием этого является удорожание электрической энергии, что в свою очередь приводит к такому положению дел, при котором энергоемкость производства становится определяющим фактором. Снижение энергоемкости различных электрохимических технологийот получения алюминия из расплавов до методов борьбы с коррозией – одна из важнейших технологических задач.
Вместе с тем широчайшие возможности электрохимических технологий, повышенное «число степеней свободы» управления процессом по сравнению с химическими процессами (посредством изменения не только состава раствора и температуры, но также плотности тока или потенциала) должны приводить (и приводят) к постоянному расширению сферы применения электрохимических технологий от их использования в электронике и микроэлектронике до технологии машиностроения.
Тесная взаимосвязь электрохимических, электронных и микроэлектронных технологий– существенная особенность современной техники.
Колоссальные возможности повышения эффективности электрохимических технологий в импульсных методах управления ими. Кроме того, возможности управления током или потенциалом создают широкое поле для автоматизации процессов.
Развитие электрохимии и электрохимических технологий, конечно же, не исчерпывается вышеприведенным перечнем, поскольку как показывает история электрохимии, да и науки вообще, как правило, не оправдываются даже самые смелые прогнозы. Реальная жизнь существенно многообразнее самых неожиданных и оптимистичных из них.