
- •Основы электрохимии и электрохимических технологий
- •Введение
- •Окислительно-восстановительные реакции.
- •Правила уравнивания окислительно-восстановительных реакций.
- •Порядок уравнивания окислительно-восстановительных реакций, т.Е. Приведение их в форму, обеспечивающую закон сохранения энергии (баланс массы и заряда).
- •Демонстрация переноса электронов в окислительно-восстановительных реакциях. Гальванический элемент.
- •Лекция 2. Законы Фарадея и скорость электрохимического процесса Выход по току. Применение закона Фарадея к расчету скорости обработки металлов.
- •Скорость электрохимической обработки
- •Электрохимический эквивалент сплава и практический электрохимический эквивалент.
- •Лекция 3. Равновесный потенциал электрода Электрод, ячейка. Напряжение электрода и ячейки. Равновесный потенциал. Виды равновесных потенциалов.
- •Равновесный потенциал.
- •Виды равновесных потенциалов.
- •Лекция 4. Основы теории электролитической диссоциации Равновесные явления в растворах электролитов. Теория электролитической диссоциации. Ион - дипольное и ион - ионное взаимодействие в электролитах.
- •Теория Дюбая – Гюккеля и ион - ионное взаимодействие в растворах электролитов.
- •Гидролиз солей.
- •Буферные растворы.
- •Ионные равновесия при растворении. Произведение растворимости.
- •Лекция 6 Электропроводность электролитов
- •Экспериментальное определение электропроводности.
- •Особые случаи электропроводности электролитов.
- •Электроды первого рода. Потенциал ионно-металлического электрода.
- •Электроды второго рода.
- •Хлорсеребряный электрод.
- •Окислительно – восстановительные (redox) системы.
- •Водородный электрод.
- •Хингидронный электрод.
- •Мембранный потенциал или потенциал Донана.
- •Методы изучения двойного электрического слоя.
- •Модельные представления о строении двойного электрического слоя.
- •Форма поляризационной кривой при наличии стадии массопереноса.
- •Лекция 11 Теория замедленного разряда.
- •Свойства уравнения теории замедленного разряда.
- •Лекция 12 Поляризация (перенапряжение) при образовании новой фазы. Перенапряжение при лимитирующей стадии образования двумерных и трёхмерных зародышей.
- •Перенапряжение поверхностной диффузии при электроосаждении металлов.
- •Перенапряжение образования пузырьков газа и связь размеров пузырьков с потенциалом.
- •Предельные токи при электроосаждении. Эффект м.А.Лошкарёва.
- •Электрические процессы в условиях медленной гомогенной химической реакции.
- •Критерии определения природы лимитирующейстадии.
- •Лекция 14 Примеры механизмов некоторых электрохимических реакций.
- •Примеры механизмов различных электрохимических реакций. Реакция выделения водорода (водородный электрод).
- •Кинетическая теория коррозии.
- •Коррозия при кислородной деполяризации.
- •Роль локальных элементов в возникновении коррозии и достижении её скорости.
- •Методы защиты от коррозии.
- •Пассивность металлов.
- •Электрохимическая размерная обработка металлов и сплавов
- •Основы прикладной электрохимии и электрохимических технологий Лекция 1 Основные особенности электрохимических технологий.
- •Конструктивные принципы электрохимических реакторов
- •Межэлектродный зазор
- •Токовые нагрузки
- •Сепараторы
- •Подвод и отвод компонентов реакции
- •Корректировка состава электролита
- •Масштабный фактор
- •Подбор коррозионностойких материалов
- •Экономические показатели
- •Классификация основных процессов переноса при химической и электрохимической технологии
- •Лекция 2. Распределение тока и рассеивающая способность электролитов Распределение тока. Виды распределения тока. Параметр Вагнера. Рассеивающая (локализующая) способность электролитов
- •Первичное распределение тока.
- •Вторичное распределение тока.
- •Третичное распределение тока.
- •Распределение тока при высоких плотностях тока (при наличии поверхностного тепловыделения)
- •Распределение скоростей осаждения или растворения при наличии зависимости выхода по току от плотности тока
- •Методы расчёта распределения тока.
- •Методы экспериментального определения рассеивающей (локализующей) способности электролита
- •Лекция 3. Химические источники тока (хит). Основные характеристики хит
- •Лекция 4 Первичные хит (хит первого рода, элементы)
- •Сухие марганцево-цинковые (мц) элементы
- •Первичные хит с магниевыми и литиевыми анодами
- •Первичные хит с литиевыми анодами
- •Хит с твердым электролитом
- •Лекция 5 Вторичные хит (аккумуляторы).
- •Свинцовые кислотные аккумуляторы
- •Основные неисправности свинцовых кислотных аккумуляторов.
- •Щелочные аккумуляторы
- •Лекция 6 Топливные элементы.
- •Лекция 7. Электролиз водных растворов без выделения металлов Производство водорода и кислорода
- •Производство тяжелой воды
- •Интенсификация электрохимических методов получения водорода
- •Лекция 8. Электрохимическое производство хлора, щелочи и гипохлотрта натрия
- •Теоретические основы электролиза растворов хлоридов
- •Электролиз с твердым катодом и фильтрующей диафрагмой
- •Электролиз с ртутным катодом.
- •Перспективы развития хлорной промышленности
- •Электросинтез гипохлорита натрия
- •Лекция 9 Электрохимические покрытия металлами и сплавами. Теоретические основы.
- •Два метода нанесения покрытий при электролизе
- •Назначение металлических покрытий металлами и сплавами
- •Управление свойствами и размерами покрытий
- •Использование нестационарного электролиза
- •Лекция 10 Электролитическое осаждение железа.
- •Катодный процесс при электроосаждении железа.
- •Электролиты железнения и режимы электролиза
- •Анодный процесс.
- •Лекция 11. Хромирование. Свойства и области применения хромовых покрытий
- •Некоторые особенности процесса хромирования
- •Электролиты и режимы электролиза.
- •Физико-механические свойства хромовых покрытий
- •Лекция 12. Меднение Область применения
- •Сравнительная характеристика медных электролитов.
- •Борфтористоводородные электролиты
- •Цианистые электролиты
- •Пирофосфатные электролиты
- •Лекция 13. Анодная и химическая обработка металлов Оксидирование
- •Электрохимическое и химическое полирование
- •Лекция 14. Электролиз расплавов. Общие сведения.
- •Строение расплавленных солей
- •Электропроводность расплавленных солей
- •Выход по току и удельный расход энергии при электролизе расплавов
- •Влияние физико-химических свойств электролита на процесс электролиза
- •Некоторые специфические явления при электролизе расплавов
- •Лекция 15. Производство алюминия
- •Переработка алюминиевых руд
- •Получение криолита
- •Электроды и другие материалы
- •Электролиз криолит-глиноземного расплава
- •Состав электролита
- •Конструкция и эксплуатация электролизеров
- •Рафинирование алюминия
- •Электролиз хлорида алюминия
- •Лекция 16. Гидроэлектрометаллургия
- •Лекция 17. Электролиз в металлургии благородных металлов
- •Вопросы для самопроверки, задачи и упражнения
- •Заключение Основные направления современного этапа развития электрохимии и электрохимических технологий
- •Литература
Хит с твердым электролитом
Первичные ХИТ с твердымэлектролитом начали интенсивно разрабатываться после 1960г. Ионная проводимость в твердых солях может быть обусловлена тепловыми колебаниями ионов в узлах кристаллической решетки, при которых происходит переход ионов из узлов решетки в межузлия (дефекты Френкеля) или когда происходит полный отрыв иона из узла с переходом его на поверхность кристалла (дефекты Шоттки). Проводимость солей, обусловленная этими дефектами, составляет всего 10-5– 10-2См/м и резко возрастает при повышенных температурах. Имеются также кристаллические структуры с большим числом структурных вакансий (что связано с разупорядочением структуры кристаллической решетки). Электрическая проводимость таких электролитов может достигать 1…100 См/м, т.е. электрической проводимости кислот высокой концентрации.
Твердые электролиты, применяемые в ХИТ, не должны обладать полупроводниковыми свойствами, т.е. иметь смешанную ионно-электронную проводимость, которая будет способствовать возникновению коротких замыканий в элементе.
Достаточно высокую ионную проводимость при комнатной температуре имеют, например, двойные соли на основе хорошо проводящих ток иодидов серебра (RbAg4I5). В качестве катодных активных веществ при этом используют полииодиды, аноды-серебрянные. Известно также применение электролитов на основе диоксидов циркония (ZrO2∙nMOx) или так называемых бета-алюминатов натрия (Na2O∙nAl2O3).
На основе твердых электролитов, являющихся одновременно и сепараторами, сконструирован ряд низкотемпературных миниатюрных элементов и батарей стаканчиковой, таблеточной и пленочной конструкций, обладающих большой механической прочностью, очень малым саморазрядом и практически неограниченным сроком службы (~ 20 лет). Элементы работоспособны вплоть до -55С, сохраняя при этом пологие разрядные характеристики. В пленочных конструкциях твердый электролит наносят на пластиковую сетку, прижимаемую электродами. Толщина батареи ХИТ, используемой для кардиостимуляторов, при площади электродов 1 см2составляет всего 100 мкм.
Так как в силу высокого сопротивления электролита разряд большинства элементов с твердыми электролитами ведут малыми (10-6…10-12А) токами, а последовательно соединенные элементы со средним разрядным напряжением около 0,6В могут давать напряжение более 100 В, эти ХИТ используют чаще всего в лабораторной технике для подзаряда конденсаторов, питания приборов с высокими омическими сопротивлениями, в электронных часах, для устройств защиты памяти в ЭВМ. Примеры некоторых электрохимических систем с твердыми электролитами и их характеристики приводятся ниже.
Ag|RbAg4I5|I2,RbJ3,C
RbI3 + 2Ag → RbI + 2AgI, (4.н)
Up= 0,67B,ip= 5А/дм2;Киав≈ 90%.
К преимуществам ХИТ с твердыми электролитами следует отнести, таким образом, высокие удельные энергии, в особенности по объему; пологие разрядные характеристики в широком интервале рабочих температур; практически неограниченный срок годности; миниатюрность и герметичность конструкций, их транспортабельность и безопасность эксплуатации. Применяют элементы в устройствах с малым потреблением энергии и длительным сроком службы, который сокращают продолжительные (0,5 ч) короткие замыкания и шунтирования.