
- •1 Глава 1. Тензоры в декартовых координатах.
- •1 Символ Кронекера и тензор Леви-Чивиты.
- •1.1 Символ кронекера.
- •1.2 Тензор Леви-Чивиты.
- •2 Дифференцирование и интегрирование тензоров.
- •2.1 Дифференциальные операции.
- •2.2 Теорема о дивергенции.
- •3 Приведение симметричного тензора 2-го ранга к каноническому виду.
- •3.1 Симметричные и антисимметричные тензоры.
- •3.2 Главные направления и главные значения тензора.
- •3.3 Приведение тензора к каноническому виду.
- •3.4 Тензорная поверхность.
- •2 Деформация.
- •1 Деформация и принцип ее описания.
- •1.1 Лагранжево и Эйлерово описание движения сплошной среды.
- •1.2 Тензор деформаций.
- •1.3 Ьалая деформация. Тензор Коши.
- •2 Теоретический смысл компонент тензора деформаций.
- •2.1 Изменение длины отрезков при деформации.
- •2.2 Изменение углов при деформации.
- •3 Разложение смещения на деформацию и вращение.
- •3.1 Разложение смещения.
- •3.2 Геометрический смысл компонент тензора
- •3.3 "Элементарные" деформации.
- •4 Относительная деформация в заданном направлении.
- •4.1 Выражение для относительной деформации в заданном направлении.
- •4.2 Иллюстрация тензорной природы
- •5 Главные оси, главные значения инварианты тензора деформаций.
- •5.1 Главные оси и главные значения.
- •5.2 Инварианты тензора деформаций.
- •5.3 Шаровой тензор и девиатор деформаций.
- •5.4 Дополнение. Иллюстрация: приведение тензора к каноническому виду.
- •6 Соотношения Сен-Венана (условия совместимости деформаций.
- •6.1 Зависимости деформаций водной плоскости.
- •6.2 Зависимости компонент деформации в разных плоскостях.
- •6.3 Соотношения Сен-Венена и непрерывность среды.
- •3 Напряжения.
- •1 Тензор напряжений.
- •1.1 Сплошность среды и принцип Коши.
- •1.2 Тензор напряжений.
- •1.3 Физический смысл компонент тензора напряжений.
- •1.4 Симметричность тензора напряжений.
- •2 Равновесие сплошной среды.
- •2.1 Уравнение равновесия.
- •2.2 Уравнение моментов.
- •2.3 Условие равновесия на поверхности тела.
- •2.4 Средние значения тензора напряжений.
- •3 Нормальные и касательные напряжения.
- •3.1 Разложение вектора напряжений.
- •3.2 Нормальные напряжения.
- •0.1 Касательные напряжения.
- •2 Главные направления, главные значения, инварианты тензора напряжений.
- •2.1 Приведение тензора напряжений к каноническому виду.
- •0.1 Максимальные нормальные напряжения.
- •0.2 Шаровой тензор и девиатор напряжений.
- •2 Особенные напряжения.
- •2.1 Максимальные касательные напряжения.
- •2.2 Октаэдрическая площадка.
- •4 Упругость.
- •5 Обобщенный закон Гука.
- •5.2 Обобщенный закон Гука.
- •6 Термодинамика деформирования.
- •6.1 Работа при деформации.
- •6.2 Основные термодинамические соотношения.
- •7 Упругость с точки зрения термодинамики.
- •7.1 Свободная энергия упругой среды.
- •7.2 Свойства упругой свободной энергии.
- •7.3 Обобщенный закон Гука.
- •7.4 Потенциальная энергия упругой деформации.
- •8 Упругость с точки зрения термодинамики
- •9 Закон Гука для однородной и изотропной среды.
- •9.1 Однородность и изотропность.
- •9.2 Закон Гука в однородной изотропной среде.
- •10 Упругие модули
- •10.1 Модуль всестороннего сжатия.
- •11 Упругость с точки зрения термодинамики.
- •11.1 Модуль сдвига.
- •11.2 Модуль Юнга и коэффициент Пуассона.
- •11.3 Соотношения между модулями.
- •12 Деформация с изменением температуры.
- •12.1 Закон Гука.
- •12.2 Изотермические и адиабатические модули.
- •6 Уравнение движения упругой среды.
- •1 Уравнение движения.
- •2 Уравнение движения.
- •3 Уравнения движения упругой среды.
- •3.1 Уравнение движения однородной анизотропной упругой среды.
- •3.2 Уравнения движения однородной изотропной упругой среды.
- •3.3 Закон сохранения энергии при движении сплошной среды.
- •5 Теоремы единственности и взаимности.
- •5.1 Начальные и граничные условия к уравнению движения.
- •5.2 Теорема единственности.
- •5.3 Теорема Бетти(e.Betti).
- •6 Теорема единственности и взаимности.
- •7 Упругие волны.
- •1 Волновые уравнения для однородной изотропной упругой среды.
- •2 Решения волнового уравнения.
- •2.1 Монохроматические волны.
- •2.2 Сферические волны.
- •2.3 Плоские волны.
- •2.4 Плоские монохроматические волны.
- •3 Скорости упругих волн.
- •3.2 Общий принцип отыскания скоростей волн в сплошной среде.
- •4 Поляризация упругих волн.
- •4.1 Поляризация волн
- •4.2 Поляризация волны .
- •4.3 Геометрическая иллюстрация.
- •5 Энергия упругих волн.
- •5.1 Плотность энергии.
- •5.2 Поток энергии. Вектор Умова.
- •6 Отражение и преломление упругих волн.
- •6.1 Граничные условия.
- •6.2 Законотражения и преломления.
- •6.3 Отражение и преломление упругих волн.
- •7 Упругие волны в анизотропной однородной среды.
- •7.1 Уравнение дисперсии.
- •7.2 Свойства упругих волн в анизотропной среде.
- •8 Поверхностные волны.
- •8.1 Неоднородные плоские волны.
- •8.2 Поверхностная волна Релея (Rayleigh, 1885)
- •8.3 Поверхностная волна Лява
8.2 Поверхностная волна Релея (Rayleigh, 1885)
.
Найдем поверхностную волну в однородном изотропном упругом полупространстве. Решения (236) волновых уравнений вида плоских неоднородных волн и имеют вид:
(237)
(238)
где
и
--- шесть произвольных констант, параметры
и
положительны.
Полное смещение в рассматриваемой поверхностной волне равно:
На смещение
наложены ограничения, обусловленные
граничными условиями на поверхности
полупространства. Согласно условию
равновесия на свободной поверхности:
Поскольку
,
граничные условия имеют вид:
(239)
Решения (238) не зависят от . Поэтому из условия
находим, что
.
Используя (238) , получим:
Поскольку
,
это условие означает, что
следовательно:
Т.о. рассматриваемая
поверхностная волна, формирующаяся в
однородном полупространстве,
поляризована в вертикальной
плоскости (в плосекости нормальной к
свободной границе), проходящей через
направления распространения волны (в
плоскости
).
Такая волна называется поверхностной
волной Рэлея.
Вследствие отмеченной
поляризации в решении (238) остается
четыре произвольных константы:
.
Для определения этих констант имеется
четыре условия (при
):
два
неиспользованных
граничных условия
(239), условия потенциальности
вектора
и условие соленоидальности
вектора
(??):
(240)
(241)
(242)
(243)
Подставляя в эти условия
решения (238), получим однородную систему
алгебраических уравнений относительно
и
.
Коэффициенты этой системы включают в
себя величины:
(а значит и
)---в
результате дифференцирования
и по
,
и
--- в результате дифференцирования
по
.
Приравнивая нулю определитель
однородной системы, получим уравнение,
связывающее
и
.
Его решение определяет зависимость
,
или
,
т.е. дисперсия волны Рэлея. Это уравнение,
называемое дисперсионным уравнением,
имеет вид:
Подставляя сюда
,
получим уравнение для скорости волны
Рэлея:
(244)
Уравнение (244) известно как уравнение Рэлея.
Из (244) видно, что скорость рассматриваемой поверхностной волны не зависит от частоты . Т.е. в однородном изотропной упругом полупространстве волна Рэлея дисперсии не испытывает.
Можно показать, что уравнение
Рэлея (244) имеет решение для любых
физически допустимых значений
и
(напомним, что всегда
).
Причем скорость волны Рэлея
.
Подставляя найденное из
(244) значение
в (238), можно оценить толщину
слоя среды, эффективно захватываемого
колебаниями в волне Рэлея. Согласно
(238) амплитуда колебаний в этой поверхностной
волне экспоненциально затухает с
глубиной. Поэтому толщину
можно оценить как:
Оценки показывают, что
где
--- длина волны Рэлея.
Т.о. волна Рэлея распространяется вдоль поверхности полупространства со скоростью в слое толщиной порядка длины волны. Благодаря этим свойствам волну Рэлея называют поверхностной волной.