Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекції з матем - заоч. від. - 3 Р.Н.doc
Скачиваний:
102
Добавлен:
18.11.2019
Размер:
3.65 Mб
Скачать

Доведення:

Оскільки в теоремі йдеться про існування та єдиність, то доведення складається з двох частин. У першій частині методом від супротивного доведемо, що операція додавання, якщо вона існує, єдина. Після цього з використанням методу математичної індукції доводиться існування такої операції. Припустимо, що існує принаймні дві операції додавання, які позначимо + і , причому для них виконуються аксіоми 5 і 6: а+0=а, а+в'=(а+в)'; а 0=а, а в'=(а в)'.

Розглянемо множину М, яка є підмножиною множини Zo. Нехай у цій множині М ці дві операції додавання єдині, Покажемо, що множина М співпадає з множиною Zo. Відповідно до методу математичної індукції потрібно перевірити виконання умов аксіоми 4. Оскільки а+о=а і а 0=а, то а+0=а 0, тобто для нуля обидві операції однакові (єдині) і 0єМ. Припустимо, що ці операції єдині для будь-якого цілого невід’ємного числа вєМ, тобто в+0=в 0. Спробуємо довести, що в'єМ, тобто а+в'=а в' – умова аксіоми 6. Виконання цієї умови означатиме, що обидві операції додавання для в'єZo однакові, а тому в'єМ, а тоді за аксіомою 4 множина М співпадає з множиною цілих невід’ємних чисел Zo, тобто в множині Zo операції додавання + і виявились однаковими. Оскільки згідно припущення маємо: а+в=а в, то за аксіомою 6 а+в'=(а+в)'=(а в)'=а в'. Таким чином, і для в' операції + і однакові, тобто в'єZo. За аксіомою 4 можна твердити, що множина М співпадає з множиною Zo. Саме тому наше припущення про неєдиність операцій додавання було хибним. Отже, якщо операція додавання існує, то вона єдина.

У другій частині доведемо, що операція додавання в множині Zo існує. Для цього знову використаємо метод математичної індукції (в подальшому для скорочення пояснень будемо використовувати абревіатуру ММІ). Утворимо множину МєZo, в якій операція додавання існує і виконуються аксіоми 5 і 6: а+0=а; а+в'=(а+в)'. Спочатку застосуємо ММІ для в=0. Якщо а=0, то 0+0=0 (за аксіомою 5). 0+0'=(0+0)'=0'. Оскільки для а=0 аксіоми 5 і 6 виконуються, то 0єМ. Тепер застосуємо ММІ для довільного вєZo, тобто доведемо, що існує операція а+в, так , що виконуються аксіоми 5 і 6. Для цього припустимо, що 0+в=в, тоді 0+в'=(0+в)'=в' (за аксіомою 6). Таким чином, для 0 і довільного в операція додавання існує. Припустимо, що операція додавання виконується для довільного аєМ, тобто справджуються аксіоми 5 і 6. а+0=а, а+в'=(а+в)'. Спробуємо довести, що до множини М входить елемент а'. Для цього виберемо, що а'+в=(а+в)'. Перевіримо, чи виконуються аксіоми 5 і 6. а'+0=(а+0)'=а'; а'+в'=(а'+в)'=(згідно аксіоми 6)=((а+в)')'=(а+в')'. Отже, аксіома 6 для а' виконується, тому а'єМ. Оскільки вимоги аксіоми 4 виконані, то М=Zo і операція додавання існує не тільки в множині М, а і в множині Zo. Теорему доведено повністю.

Теорема 2: операція додавання в множині цілих невід’ємних чисел підкоряється асоціативному (сполучному) закону.

Символічно ця теорема запишеться так: (а,в,сєZo)((а+в)+с=а+(в+с)=а+в+с).

Теорема 3: операція додавання в множині цілих невід’ємних чисел підкоряється комутативному (переставному) закону.

Символічно ця теорема запишеться так: (а,вєZo)(а+в=в+а).

Ми вже зазначали, що в математиці доведено рівносильність теоретико-множинної та аксіоматичної теорії цілих невід’ємних чисел, а тому справедливість теорем 2-3 приймемо без доведення, зазначивши, що теореми 2 і 3 також доводяться з використанням методу математичної індукції. Аксіоми 5 і 6 та теореми 1-3 повністю визначають операцію додавання на множині цілих невід’ємних чисел, але для її виконання потрібно скласти відповідні таблиці додавання. Вони, якщо їх знати напам’ять, дадуть можливість швидко виконувати обчислення. В курсі математики початкових класів існують вісім таблиць додавання: таблиця додавання числа 2, таблиця додавання числа 3, таблиця додавання числа 4, таблиця додавання числа 5, таблиця додавання числа 6, таблиця додавання числа 7, таблиця додавання числа 8, таблиця додавання числа 9. Побудова таблиць додавання ґрунтується на наступній теоремі.

Теорема 4: для будь-якого цілого невід’ємного числа х справедлива рівність х+1=х′ (символічно: (хєZo)(х+1=х′)).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]