
- •Ведение в.1. Комплекс авиационного вооружения
- •В.3. Очерк развития авиационного артиллерийского вооружения
- •Р аздел 1. Авиационное артиллерийское оружие
- •Глава 1. Структура, принципы устройства и действия авиационного артиллерийского оружия
- •1.1. Классификация авиационного артиллерийского оружия
- •1.1. Назначение и характерные черты авиационного артиллерийского оружия
- •1.2. Базовые образцы авиационного артиллерийского оружия ввс России
- •1.3. Характеристики авиационного артиллерийского оружия
- •1.4. Критерии оценки технического совершенства авиационного артиллерийского оружия
- •1.5. Операции и механизмы заряжания авиационного артиллерийского оружия
- •1.5.1. Механизмы подачи
- •1.5.2. Механизмы снижения
- •1.5.3. Механизмы досылания
- •1.5.4. Механизмы запирания
- •1.5.5. Механизмы отпирания
- •1.5.6. Механизмы экстракции
- •1.5.7. Механизмы удаления
- •1.6. Механизмы управления стрельбой
- •1.6.1. Спусковые механизмы
- •1.6.2. Стартеры
- •1.6.3. Стреляющие механизмы
- •1.6.4. Блокировка стрельбы при незапертом канале ствола
- •1.6.5. Механизмы устранения задержки стрельбы
- •1.7. Структурная схема авиационного артиллерийского оружия
- •1.7.1. Ствольные агрегаты и блоки стволов
- •1.7.2. Двигатели автоматики
- •1.7.3. Вспомогательные механизмы
- •1.8. Цикл автоматики авиационного артиллерийского оружия и пути снижения его продолжительности
- •1.9. Анализ цикла автоматики одноствольного оружия
- •1.10. Анализ цикла автоматики двуствольного оружия
- •1.11. Анализ цикла автоматики многоствольного оружия
- •1.12. Анализ револьверного цикла автоматики оружия
- •Глава 2. Исследование функционирования двигателей авиационного артиллерийского оружия
- •2.1. Особенности устройства стволов авиационного артиллерийского оружия
- •2.2. Определение и характеристики основных технических данных нарезной части канала ствола
- •2.3. Силы, действующие на ствол оружия при движении снаряда по нарезной части канала ствола
- •2.4. Определение и анализ действия давления ведущего пояска снаряда на боевую грань нареза ствола
- •2.5. Виды износа стволов и их характеристика
- •2.6. Анализ факторов, влияющих на живучесть ствола артиллерийского оружия
- •2.7. Способы изготовления нарезки стволов артиллерийского оружия
- •2.8. Основы математической модели термопластического износа ствола
- •2.9. Расчет ствола на прочность
- •2.10. Теоретическое обоснование величины предельной и допустимой длины очереди
- •2.11. Анализ влияния режима стрельбы на живучесть стволов авиационного артиллерийского оружия
- •2.12. Особенности функционирования газоотводного двигателя автоматики авиационного артиллерийского оружия
- •2.13. Математическая модель работы газоотводного двигателя автоматики артиллерийского оружия
- •2.14. Анализ работы газоотводного двигателя автоматики артиллерийского оружия
- •2.15. Функционирование двигателя автоматики артиллерийского оружия откатного типа
- •2.16. Функционирование двигателя автоматики оружия при свободном и торможенном откате
- •Глава 3. Основы динамического анализа работы
- •3.2. Уравнение движения основного звена автоматики авиационного артиллерийского оружия
- •3.3. Анализ мощности, потребляемой механизмом досылания авиационного артиллерийского оружия
- •3.4. Анализ мощности, потребляемой механизмом подачи артиллерийского оружия
- •3.5. Анализ мощности силы давления ведущего пояска снаряда на боевую грань нареза ствола
- •3.6. Анализ мощности, потребляемой механизмами автоматики артиллерийского оружия с вращающимся блоком стволов
- •3.7. Мощность, развиваемая газоотводным пороховым двигателем
- •3.8. Стартерные устройства и особенности их расчета
- •Глава 4. Основы исследования силового воздействия оружия на артиллерийскую установку и летательный аппарат
- •4.1. Особенности воздействия артиллерийского оружия на установку и летательный аппарат
- •4.1.1. Силовое воздействие
- •4.1.2. Вибрационное воздействие
- •4.2. Действие дульных газов
- •4.2.1. Нарушение однородности воздушного потока
- •4.3. Конструкция и работа амортизатора силы отдачи
- •4.3.1. Асо с витой пружиной
- •4.3.2. Асо с кольцевой пружиной
- •4 ‑ Гайка; 5 – ось; 6 – упор; 7 – кольцевая пружина
- •4.4. Уравнение движения артиллерийского оружия при стрельбе
- •4.4.1. Вывод уравнения движения оружия на амортизаторе
- •4.4.2. Решение уравнения движения оружия на амортизаторе
- •4.5. Схемы амортизации и их анализ
- •4.6. Методика определения средней силы отдачи амортизатора
- •4.7. Сила отдачи в лафете установки
- •Р аздел 2. Авиационные артиллерийские установки Глава 5. Структура, принципы устройства и действия авиационных артиллерийских установок
- •5.1. Назначение, состав и классификация авиационных
- •Артиллерийских установок
- •5.2. Структура авиационной артиллерийской установки
- •5.3. Характеристики авиационных артиллерийских установок
- •5.4. Лафет авиационной артиллерийской установки
- •5.5. Силы и моменты, действующие на авиационную артиллерийскую установку
- •5.6. Системы питания оружия патронами
- •5.7. Обеспечение взрывобезопасности авиационных артиллерийских установок
- •Глава 6. Исследование функционирования системы управления наводкой оружия
- •6.1. Назначение и состав следящего привода
- •6.2. Применение сельсинной связи в следящем приводе
- •6.3. Фазочуствительные усилители
- •6.4. Усилители мощности
- •6.5. Исполнительные двигатели
- •6.6. Определение потребной мощности исполнительного электродвигателя
- •6.7. Способы наводки оптических визирных устройств на цель оператором
- •6.8. Цепи управления установкой
- •6.9. Система управления стрельбой
- •6.10. Системы устранения задержек стрельбы
- •Глава 7. Анализ работы электрического следящего привода авиационной артиллерийской установки
- •7.1. Анализ устойчивости и точности работы электрического следящего привода при отсутствии корректирующих цепей
- •7.3. Анализ работы электрического следящего привода с обратной связью по производной от скорости оружия
- •7.4. Анализ работы электрического следящего привода с обратной связью от напряжения на якоре двигателя и от скорости оружия
- •7.5. Анализ работы электрического следящего привода с обратной связью по производной от угла рассогласования
- •Заключение
2.9. Расчет ствола на прочность
Во время стрельбы стенки ствола деформируются в результате давления на них пороховых газов, скручиваются и растягиваются в результате воздействия ведущего пояска на боевые грани нарезов, растягиваются силами трения снаряда о поверхность канала ствола и инерционными усилиями, возникающими при откате ствола, наконец, они нагреваются пороховыми газами.
Решающее влияние на прочность ствола оказывает давление пороховых газов. Поэтому расчет ствола на прочность обычно ведется только на внутреннее давление пороховых газов, а остальные воздействия учитывают за счет некоторого запаса прочности.
При расчете ствола на прочность обычно принимают следующие допущения:
Ствол считается цилиндрическим, а имеющиеся конические участки разбиваются на необходимое число цилиндрических так, чтобы разница в диаметрах оснований была не значительной;
Пренебрегают силами инерции элементов ствола, осевыми и скручивающими усилиями, поскольку их влияние незначительно;
Температурные напряжения и снижение допустимых напряжений вследствие нагревания ствола учитываются при специальных расчетах. Основной расчет проводят для первого выстрела;
Материал ствола считают однородным;
Ствол после деформации сохраняет цилиндрическую форму и любое его сечение остается плоским;
Давление в стволе действует статически.
С учетом этих допущений задача расчета ствола на прочность сводится к определению напряжений в толстостенной трубе, подверженной внутреннему давлению, т.е. к известной в теории упругости задаче Ламе-Гадолина.
В результате для определения напряжений в стенке ствола можно использовать следующие формулы:
(2.8)
(2.9)
где
– соответственно тангенциальное,
радиальное и осевое напряжения;
– радиусы
внутренней и наружной поверхностей
ствола;
– текущий
радиус по толщине стенки ствола (
).
Анализ этих формул позволяет сделать следующие выводы:
тангенциальное напряжение является растягивающим, а радиальные – сжимающими (
);
т
8*
ангенциальные напряжения всегда больше радиальных и достигают максимальных значений на внутренней поверхности ствола ();
максимальное тангенциальное напряжение всегда больше внутреннего давления (
), т.е. без принятия специальных мер нельзя изготовить ствол, выдерживающий давление, равное пределу прочности внутренних слоев ствола.
Увеличение прочности ствола по отношению к внутреннему давлению достигается за счет изготовления многослойных и автофретированных стволов. В многослойных стволах наружная труба надевается на внутреннюю с некоторым натягом. Вследствие натяга тангенциальные напряжения в стенке внутренней трубы уменьшаются, а в стенке наружной трубы увеличиваются. В автофретированных (или многослойных автоскрепленных) стволах предварительное напряжение во внутренних слоях стенки ствола получают, подвергая их большому внутреннему давлению, при котором эти слои получают пластическую деформацию. Увеличение прочности этих слоев происходит за счет образования наклепа металла и появления остаточных напряжений сжатия.
Во время выстрела каждый элемент ствола испытывает сложное напряженное состояние. В этом случае для определения прочности ствола необходимо воспользоваться одной из теорий прочности. Наибольшее распространение при расчете стволов получила теория наибольших относительных деформаций. В основу этой теории положено допущение о том, что прочность материала не нарушается, если наибольшая относительная деформация при сложном напряжении достигает такого значения, которое имеет место при простом нагружении с допускаемым напряжением растяжения или сжатия.
Величина
относительной деформации
при простом нагружении (сжатие или
растяжение) по допускаемому напряжению
определяется
по формуле
,
где Е – модуль упругости материала ствола.
Учитывая, что максимальная относительная деформация ствола имеет место в тангенциальном направлении и ее величина определяется формулой
,
для принятой теории условие обеспечения прочности (ε0 = εt) выражается следующей зависимостью:
,
(2.10)
где
– коэффициент Пуассона (для стали
).
Выше
было показано, что максимальные напряжения
возникают на внутренней поверхности
ствола. Тогда подставляя в формулу
(2.10) значения
и
из выражений (2.8, 2.9) и принимая
,
получим
.
(2.11)
При расчете на прочность обычно задается некоторый запас прочности деталей
,
(2.12)
где
– предел упругости;
n – коэффициент запаса прочности.
На
практике при расчете ствола используется
так называемое предельное давление
.
Кроме того, в расчетах учитывают, что
при первых выстрелах материал ствола
упрочняется, поэтому допустимые
напряжения в формуле (2.12) относят не к
пределу упругости
,
а к пределу текучести
.
Таким
образом, заменяя в формуле (2.12)
на
и подставляя в нее значение
из выражения (2.11), окончательно получим
условие обеспечения прочности в следующем
виде:
.
Тогда для определения минимального значения наружного радиуса ствола получим формулу в виде
.
(2.13)
Расчет ствола на прочность с использованием формулы (2.13) выполняют в следующей последовательности:
баллистическим расчетом определяют кривую давления пороховых газов по длине ствола p(l) и значение максимального давления
;
строят кривую предельного давления
(l). При этом по всей длине патронника принимают
, от начала соединительного конуса по длине ствола за точку максимального давления на два-три калибра предельное давление принимают постоянным значением, равным (1,1…1,2) , и далее к дульному срезу
;
выбирают материал ствола с определенным значением предела текучести
s;
в соответствии с формулой (2.13) рассчитывают минимальный наружный радиус ствола;
из конструктивных соображений окончательно выбирают конфигурацию и наружные размеры ствола так, чтобы по всей длине ствола размеры не выходили за пределы минимально допустимых.
В настоящее время стволы авиационного оружия изготовляют из стали с пределом текучести =700…850 МПа.