
- •СОДЕРЖАНИЕ
- •ПРЕДИСЛОВИЕ
- •ВВЕДЕНИЕ
- •ГЛАВА 1. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
- •§1.1. Определение и изображение электрического поля
- •§ 1.2. Закон кулона. Напряженность электрического поля
- •§ 1.3. Потенциал. Электрическое напряжение
- •§ 1.4. Проводники в электрическом поле. Электростатическая индукция
- •§1.5. Диэлектрики в электрическом поле. Поляризация диэлектрика
- •§ 1.6. Электроизоляционные материалы
- •Газообразные диэлектрики.
- •Жидкие диэлектрики.
- •Твердые диэлектрики.
- •Твердеющие диэлектрики.
- •§ 1.7. Электрическая емкость. Плоский конденсатор
- •§ 1.8. Соединение конденсаторов. Энергия электрического поля
- •Параллельное соединение.
- •Последовательное соединение.
- •ГЛАВА 2 .ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
- •§ 2.1. Электрическая цепь
- •§ 2.2. Электрический ток
- •§ 2.3. ЭДС и напряжение
- •§ 2.4. Закон ОМА
- •§ 2.5. Электрическое сопротивление и проводимость
- •§ 2.6. Основные проводниковые материалы и проводниковые изделия
- •§ 2.7. Зависимость сопротивления от температуры
- •§ 2.8. Способы соединения сопротивлений
- •Параллельное соединение.
- •Последовательное соединение.
- •Смешанное соединение.
- •§2.9. Электрическая работа и мощность. Преобразование электрической энергии в тепловую.
- •§ 2.10. Токовая нагрузка проводов и защита их от перегрузок
- •§ 2.11. Потери напряжения в проводах
- •§ 2.12. Два режима работы источника питания
- •§ 2.13. Расчет сложных электрических цепей
- •Метод узловых и контурных уравнений.
- •Метод контурных токов.
- •Метод узлового напряжения.
- •§ 2.14. Нелинейные электрические цепи
- •Последовательное соединение.
- •Параллельное соединение.
- •ГЛАВА 3 ЭЛЕКТРОМАГНЕТИЗМ
- •§ 3.1. Характеристики магнитного поля
- •§ 3.2. Закон полного тока
- •§ 3.3. Магнитное поле прямолинейного тока
- •§3.4. Магнитное поле кольцевой и цилиндрической катушек.
- •§ 3.5. Намагничивание ферромагнитных материалов
- •§ 3.6. Циклическое перемагничивание
- •§ 3.7. Расчет магнитной цепи
- •Первый закон Кирхгофа.
- •Второй закон Кирхгофа.
- •Закон Ома.
- •§ 3.8. Электрон в магнитном поле
- •§3.9. Проводник с током в магнитном поле. Взаимодействие параллельных проводников с током
- •§ 3.10. Закон электромагнитной индукции
- •§ 3.11. ЭДС индукции в контуре
- •§ 3.12. Принцип Ленца
- •§ 3.13. Преобразование механической энергии в электрическую
- •§ 3.14. Преобразование электрической энергии в механическую
- •§3.15. Потокосцепление и индуктивность катушки
- •§ 3.16. ЭДС самоиндукции. Энергия магнитного поля
- •§ 3.17. ЭДС взаимоиндукции. Вихревые токи
- •ГЛАВА 4. ОСНОВНЫЕ ПОНЯТИЯ ПЕРЕМЕННОГО ТОКА
- •§4.1. Определение, получение и изображение переменного тока
- •§ 4.2. Параметры переменного тока
- •§ 4.3. Фаза переменного тока. Сдвиг фаз
- •§ 4.4. Изображение синусоидальных величин с помощью векторов
- •§ 4.5. Сложение и вычитание синусоидальных величин
- •§ 4.6. Поверхностный эффект. Активное сопротивление
- •ГЛАВА 5. ОДНОФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ
- •§ 5.1. Особенность электрических цепей
- •§ 5.2. Цепь с активным сопротивлением
- •Мгновенная мощность.
- •Средняя мощность.
- •§ 5.3. Цепь с индуктивностью
- •Мгновенная мощность.
- •Реактивная мощность.
- •§5.4. Цепь с активным сопротивлением и индуктивностью
- •Мгновенная мощность.
- •Средняя мощность.
- •Реактивная мощность.
- •Полная мощность.
- •§5.5. Цепь с емкостью
- •Мгновенная мощность.
- •Реактивная мощность.
- •§ 5.6. Цепь с активным сопротивлением и емкостью
- •Мгновенная мощность.
- •Средняя мощность.
- •Реактивная мощность.
- •§5.7. Цепь с активным сопротивлением, индуктивностью и емкостью
- •§ 5.8. Резонансный режим работы цепи
- •§ 5.9. Резонанс напряжений
- •§ 5.10. Разветвленная цепь. Метод проводимостей
- •§ 5.11. Резонанс токов
- •§ 5.12. Коэффициент мощности.
- •ГЛАВА 6. ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ
- •§6.1. Принцип получения трехфазной ЭДС. Основные схемы соединения трехфазных цепей
- •§6.2. Соединение трехфазной цепи звездой. Четырех и трехпроводная цепи
- •§ 6.3. Cоотношения между фазными и линейными напряжениями и токами при симметричной нагрузке в трехфазной цепи, соединенной звездой
- •§6.4. Назначение нулевого провода в четырехпроводной цепи
- •§6.5. Соединение нагрузки треугольником. Векторные диаграммы, соотношения между фазными и линейными токами и напряжениями
- •§6.6. Активная, реактивная и полная мощности трехфазной цепи. коэффициент мощности
- •§ 6.7. Выбор схем соединения осветительной и силовой нагрузок при включении их в трехфазную сеть
- •ГЛАВА 7. ТРАНСФОРМАТОРЫ
- •§7.1. Назначение трансформаторов и их применение
- •§7.2. Устройство трансформатора
- •§7.3. Формула трансформаторной ЭДС
- •§7.4. Принцип действия однофазного трансформатора. Коэффициент трансформации
- •§7.5. Трехфазные трансформаторы
- •§7.6. Aвтотрансформаторы и измерительные трансформаторы
- •§ 7.7. Cварочные трансформаторы
- •ГЛАВА 8. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА
- •§8.1. Вращающееся магнитное поле
- •Вращающееся магнитное поле двухфазного тока.
- •Графическое пояснение процесса образования вращающегося магнитного поля.
- •Вращающееся магнитное поле трехфазного тока.
- •§ 8.2. Устройство асинхронного двигателя
- •§ 8.3. Принцип действия асинхронного двигателя. Физические процессы, происходящие при раскручивании ротора
- •§8.4. Скольжение и частота вращения ротора
- •§8.5. Влияние скольжения на ЭДС в обмотке ротора
- •§8.6. Зависимость значения и фазы тока от скольжения и ЭДС ротора
- •§8.7. Вращающий момент асинхронного двигателя
- •§8.8. Влияние активного сопротивления обмотки ротора на форму зависимости вращающего момента от скольжения
- •§ 8.9. Пуск асинхронного двигателя
- •§8.10. Регулирование частоты вращения асинхронного двигателя
- •§8.11. КПД и коэффициент мощности асинхронного двигателя
- •§8.12. Однофазный асинхронный двигатель
- •§8.13. Синхронный генератор
- •§8.14. Синхронный двигатель
- •ГЛАВА 9. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА
- •§9.1. Устройство электрических машин постоянного тока. Обратимость машин
- •§9.2. Принцип работы машины постоянного тока
- •Генератор постоянного тока.
- •Двигатель постоянного тока.
- •§9.3. Понятие об обмотке якоря. Коллектор и его назначение
- •§9.4. ЭДС, индуцируемая в обмотке якоря
- •§9.5. Реакция якоря
- •§9.6. Коммутация и способы ее улучшения. Дополнительные полюсы
- •§9.7. Генераторы постоянного тока независимого возбуждения
- •§ 9.8. Генераторы с самовозбуждением
- •Генератор параллельного возбуждения.
- •Генератор последовательного возбуждения.
- •Генераторы смешанного возбуждения.
- •§9.9. Двигатели постоянного тока независимого и параллельного возбуждения. Вращающий момент
- •§9.10. Механическая и рабочие характеристики двигателей постоянного тока независимого и параллельного возбуждения
- •§9.11. Регулирование частоты вращения двигателей постоянного тока независимого и параллельного возбуждения
- •§9.12. Двигатели постоянного тока последовательного и смешанного возбуждения
- •ГЛАВА 10. ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ЭЛЕМЕНТЫ АВТОМАТИКИ
- •§10.1. Автоматы и автоматика
- •§10.2. Структура системы автоматического регулирования
- •§10.3. Устройства для измерения сигналов в автоматических системах
- •§10.4. Реле
- •§10.5. Магнитные усилители, их назначение и классификация
- •§10.6. Принцип действия дроссельного магнитного усилителя
- •§10.7. Принцип действия трансформаторного магнитного усилителя
- •§10.8. Влияние обратной связи на коэффициент усиления магнитного усилителя
- •§10.9. Дифференциальный магнитный усилитель с обмотками смещения
- •§10.10. Дифференциальный магнитный усилитель с обратной связью
- •§10.11. Магнитный усилитель, собранный по мостовой схеме
- •§10.12. Ферромагнитные стабилизаторы напряжения
- •ГЛАВА 11. ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ И ПРИБОРЫ
- •§11.1. Сущность и значение электрических измерений
- •§11.2. Основные единицы электрических и магнитных величин в международной системе единиц
- •§11.3. Производные и кратные единицы
- •§11.4. Основные методы электрических измерении. Погрешности измерительных приборов
- •§11.6. Электроизмерительные приборы непосредственной оценки
- •§11.7. Приборы магнитоэлектрической системы
- •§11.8. Приборы электромагнитной системы
- •§11.9. Приборы электродинамической системы
- •§11.10. Цифровые приборы
- •§11.12. Расширение пределов измерения приборов непосредственной оценки
- •§11.13. Измерение мощности в трехфазных цепях
- •§11.14. Индукционный счетчик электрической энергии. Учет энергии в однофазных и трехфазных цепях
- •§11.15. Измерение сопротивлений
- •§11.16. Измерение сопротивлений с помощью моста постоянного тока
- •§11.17. Магнитоэлектрический осциллограф
- •ГЛАВА 12. ПЕРЕДАЧА И РАСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
- •§12.1. Назначение и классификация электрических сетей, их устройство и графическое изображение
- •§12.2. Провода, кабели, электроизоляционные материалы в сетях напряжением до 1000В
- •§12.3. Электроснабжение промышленных предприятий
- •§12.4. Падение и потеря напряжения в линиях электроснабжения
- •§12.5. Расчет проводов по допустимой потере напряжения в линиях постоянного, однофазного и трехфазного тока
- •§12.6. Сопоставление двухпроводной однофазной системы передачи энергии с трехфазными системами по расходу цветного металла
- •§12.7. Расчет проводов по допустимому нагреву
- •§12.8. Плавкие предохранители
- •§12.9. Выбор плавких вставок
- •§12.10. Выбор площади сечения проводов в зависимости от установленных предохранителей
- •§12.11. Действие электрического тока на организм человека. Понятие о напряжении прикосновения. допустимые значения напряжения прикосновения
- •§12.12. Защитное заземление трехпроводных цепей трехфазного тока
- •§12.13. Защитное заземление четырехпроводных цепей трехфазного тока
- •§12.14. Устройство и простейший расчет заземлителей
- •ГЛАВА 13. ОСНОВЫ ЭЛЕКТРОПРИВОДА
- •§13.1. Понятие об электроприводе
- •§13.2. Нагревание и охлаждение электродвигателей
- •§13.3. Режимы работы электродвигателей. Выбор мощности
- •Длительный режим.
- •Кратковременный режим.
- •§13.4. Релейно-контакторное управление электродвигателями
- •Назначение релейно-контакторного управления.
- •Изображение схем релейно-контакторного управления.
- •Схема управления и защиты асинхронного двигателя с помощью реверсивного магнитного пускателя.
- •Схема автоматического пуска асинхронного двигателя с контактными кольцами.
- •§14.1. Общие сведения
- •§ 14.2. Электронная эмиссия
- •§14.3. Катоды электронных ламп
- •§14.4. Движение электронов в электрическом и магнитном полях
- •§14.5. Диоды
- •Параметры диодов.
- •Типы ламповых баллонов и система обозначений электронных ламп.
- •§14.6. Триоды
- •Устройство и принцип работы.
- •Характеристики триодов.
- •Параметры триодов.
- •Понятие о динамическом режиме работы триода.
- •Недостатки триода.
- •§14.7. Тетроды
- •§14.8. Пентоды. Лучевые тетроды
- •§14.9. Многоэлектродные и комбинированные лампы
- •ГЛАВА 15. ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ
- •§15.1. Основные разновидности электрических разрядов в газе
- •§ 15.2. Газотрон
- •§ 15.3. Тиратрон
- •§15.4. Стабилитрон
- •§15.5. Газосветные сигнальные лампы и индикаторы
- •§15.6. Условные обозначения и маркировка газоразрядных приборов
- •ГЛАВА 16. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ
- •§16.1. Атомы
- •§16.2. Энергетические уровни и зоны
- •§16.3. Проводники, изоляторы и полупроводники
- •§16.4. Электропроводность полупроводников
- •§16.5. Электронно-дырочный переход
- •§16.6. Полупроводниковые диоды
- •§16.7. Биполярный транзистор
- •§16.8. Полевые транзисторы
- •№ 16.9. Тиристоры
- •§16.10. Области применения транзисторов и тиристоров
- •ГЛАВА 17. ФОТОЭЛЕКТРИЧЕСКИЕ ПРИБОРЫ
- •§17.1. Основные понятия и определения
- •§17.2. Электронные фотоэлементы с внешним фотоэффектом
- •§17.3. Фотоэлектронные умножители
- •§17.4. Фоторезисторы
- •§ 17.5. Фотодиоды
- •§17.6. Фототранзисторы
- •ГЛАВА 18ЭЛЕКТРОННЫЕ ВЫПРЯМИТЕЛИ
- •§18.1. Основные сведения о выпрямителях
- •§18.2. Однополупериодный выпрямитель
- •§18.3. Двухполупериодный выпрямитель
- •§18.4. Трехфазный выпрямитель
- •§18.5. Выпрямитель на тиристоре. Стабилизатор напряжения
- •§18.6. Сглаживающие фильтры. выпрямление с умножением напряжения
- •§19.1. Общие сведения
- •Классификация усилителей.
- •Основные технические характеристики усилителей.
- •§19.2. Предварительный каскад УНЧ
- •§19.3. Выходной каскад УНЧ
- •§19.4. Обратная связь в усилителях
- •§19.5. Межкаскадные связи. усилители постоянного тока
- •§19.6. Импульсные и избирательные усилители
- •ГЛАВА 20. ЭЛЕКТРОННЫЕ ГЕНЕРАТОРЫ И ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
- •§20.1. Общие сведения
- •§20.2. Транзисторный автогенератор типа
- •§20.3. Транзисторный автогенератор типа
- •§20.4. Генераторы линейно изменяющегося напряжения
- •§20.5. Мультивибратор
- •§20.6. Электронно-лучевые трубки
- •ЭЛТ с электростатическим управлением.
- •ЭЛТ с электромагнитным управлением.
- •§20.7. Электронный осциллограф
- •§20.8. Аналоговый электронный вольтметр
- •§20.9. Цифровой электронный вольтметр
- •§21.1. Общие сведения
- •§21.2. Гибридные интегральные микросхемы
- •§21.3. толстопленочные микросхемы
- •§21.4. Тонкопленочные микросхемы
- •§21.5. Фотолитография
- •§21.6. Полупроводниковые интегральные микросхемы
- •§21.7. Планарно-эпитаксиальная технология изготовления ИМС
- •§21.8. Элементы полупроводниковых микросхем и их соединение
- •§21.9. Применение интегральных микросхем
- •ГЛАВА 22. ЦИФРОВЫЕ ЭЛЕКТРОННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ. МИКРОПРОЦЕССОРЫ И МИКРОЭВМ
- •§22.1. Системы счисления
- •§22.2. Перевод чисел из одной системы в другую
- •§22.3. Арифметические операции с двоичными числами
- •§22.4. Структурная схема цифровой электронной вычислительной машины
- •§22.5. Принцип действия ЦЭВМ
- •§22.6. Триггеры
- •§22.7. Логические элементы
- •§22.8. Счетчики импульсов
- •§22.9. Регистры
- •§22.10. Сумматор
- •§22.11. Арифметическое устройство
- •§22.12. Оперативное запоминающее устройство
- •§22.13. Внешние запоминающие устройства
- •§22.14. Устройство управления
- •§22.15. Устройство ввода информации
- •§22.17. Понятие о программировании
- •§22.18. Технические характеристики и применение ЦЭВМ
- •§22.19. Микропроцессоры
- •§22.20. Микрокалькуляторы
- •§22.21. Микроэвм
- •§22.22. Робототехника
- •КОНСУЛЬТАЦИИ
- •Консультации к главе 1
- •Консультации к главе 2
- •Консультации к главе 3
- •Консультации к главе 4
- •Консультации к главе 5
- •Консультации к главе 6
- •Консультации к главе 7
- •Консультации к главе 8
- •Консультации к главе 9
- •Консультации к главе 10
- •Консультации к главе 11
- •Консультации к главе 12
- •Консультации к главе 13
- •Консультации к главе 14
- •Консультации к главе 15
- •Консультации к главе 16
- •Консультации к главе 17
- •Консультации к главе 18
- •Консультации к главе 19
- •Консультации к главе 20
- •Консультации к главе 21
- •Консультации к главе 22

где εr — относительная диэлектрическая проницаемость диэлектрика, разделяющего пластины конденсатора; ε0 — электрическая постоянная; S — площадь одной пластины, м2; d — расстояние между пластинами, м.
Промышленность выпускает конденсаторы различной емкости — от 1 пФ до нескольких тысяч микрофарад на различные номинальные напряжения (от единиц вольт до сотен киловольт), различного назначения и конструкции. По типу диэлектрика конденсаторы делятся на бумажные, слюдяные, керамические и др.
Конденсаторы находят широкое применение в электротехнике и радиотехнике.
Карточка № 1.6 (212). Электрическая емкость. Плоский конденсатор
Нужно ли изменять емкость конденсатора, чтобы |
при |
Уменьшить |
|
8 |
неизменном напряжении между его пластинами |
заряд |
|
|
|
Оставить без изменения |
47 |
|||
увеличился? Если да, то как? |
|
|
|
|
|
Увеличить |
|
14 |
|
Как изменятся емкость и заряд на пластинах конденсатора, |
Емкость и заряд увеличатся |
19 |
||
если напряжение на его зажимах повысится? |
|
|
|
|
|
Емкость уменьшится, заряд |
9 |
||
|
|
увеличится |
|
|
|
|
Емкость |
останется |
5 |
|
|
неизменной, |
заряд |
|
|
|
увеличится |
|
|
|
|
Емкость |
останется |
39 |
|
|
неизменной, |
заряд |
|
|
|
уменьшится |
|
|
При неизменном напряжении увеличится расстояние между |
Увеличится |
|
44 |
|
пластинами конденсатора. Как изменится при этом |
заряд |
|
|
|
Не изменится |
|
63 |
||
конденсатора? |
|
|
|
|
|
Уменьшится |
|
93 |
|
|
|
|
||
Конденсатор образован тремя пластинами, как показано на |
3S |
|
100 |
|
рисунке. Площадь каждой пластины S. Какую площадь |
|
|
|
|
S |
|
82 |
||
следует подставить в формулу для определения емкости? |
|
|
|
|
|
2S |
|
57 |
|
|
|
|
||
|
|
|
|
|
Расстояние между пластинами конденсатора d. Какой |
2d |
|
74 |
|
параметр нужно подставить в формулу для определения |
|
|
|
|
d |
|
43 |
||
емкости? |
|
|
|
|
|
|
|
|
|
§ 1.8. Соединение конденсаторов. Энергия электрического поля
На практике нужную емкость получают, прибегая к различным способам соединения стандартных конденсаторов.
Параллельное соединение.
При параллельном соединении конденсаторов потенциал пластин, соединенных с положительным полюсом источника, одинаков и равен потенциалу этого полюса (рис. 1.9). Соответственно потенциал пластин, соединенных с отрицательным полюсом, равен потенциалу этого полюса. Следовательно, напряжение, приложенное к конденсаторам, одинаково. Общий
заряд Qобщ=Q1+Q2+Q3.
Так как, согласно (1.9), Q = CU, то Qобщ = СобщU; Q1=C1U; Q2 = C2U; Q3 = C3U и Собщ=С1U+
С2U+С3U
Таким образом, общая, или эквивалентная, емкость при параллельном соединении конденсаторов равна сумме емкостей отдельных конденсаторов:

Со6щ = С1+С2+Сз. |
(1.П) |
Из формулы (1.11) следует, что при параллельном соединении одинаковых конденсаторов |
|
емкостью С общая емкость, |
|
Собш=пС. |
(1.12) |
Рис. 1.9. Параллельное соединение конденсаторов Рис. 1.10. Последовательное соединение конденсаторов
Последовательное соединение.
При последовательном соединении конденсаторов (рис. 1.10) на пластинах будут одинаковые заряды. На внешние электроды заряды поступают от источника питания. На внутренних электродах конденсаторов С1 и С3 удерживается такой же заряд, как и на внешних. Но
поскольку заряды на внутренних электродах получены за счет разделения зарядов с помощью электростатической индукции, заряд конденсатора С2 имеет такое же значение.
Найдем общую емкость для этого случая. Так как U=U1+U2+U3, где U=Q/Co6щ; U1=Q/C1;
U2=Q/C2; U3=Q/C3, то Q/Co6щ=Q/C1+Q/C2+Q/C3. Сократив на Q, получим
1/Co6щ=1/С1+1/С2+1/С3. |
(1.13) |
При последовательном соединении двух конденсаторов, используя (1.13), найдем |
|
Co6щ= С1С2/(С1+С2). |
(1.14) |
При последовательном соединении п одинаковых конденсаторов емкостью С каждый на |
|
основании (1.13) общая емкость |
|
Co6щ=С/n. |
(1.15) |
При зарядке конденсатора от источника питания энергия этого источника преобразуется в |
|
энергию электрического поля конденсатора: |
|
WC= CU2/2, |
(1.16) |
или с учетом того, что Q = CU, |
|
WC = QU/2. |
(1.17) |
Физически накопление энергии в электрическом поле происходит за счет поляризации молекул или атомов диэлектрика.
При замыкании пластин конденсатора проводником происходит разрядка конденсатора и в результате энергия электрического поля преобразуется в теплоту, выделяемую при прохождении тока через проводник.

Карточка № 1.7 (267).
Соединение конденсаторов. Энергия электрического поля
|
Три |
конденсатора, |
подключенные к |
источнику |
питания, |
U1 > U2> U3 |
|
|
73 |
|
|
соединены последовательно. Как распределяется напряжение на |
|
|
|
|
|||||
|
конденсаторах? |
|
|
|
|
|
|
|
|
|
|
|
|
|
U1 = U2 = U3 |
|
|
6 |
|||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
U1 < U2 < U3 |
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Недостаточно данных |
для |
65 |
|
|
|
|
|
|
|
|
ответа на вопрос |
|
|
|
|
|
|
|
|
|
|||||
|
При последовательном соединении двух конденсаторов, |
Увеличится |
|
|
70 |
|||||
|
подключенных к источнику питания, один из них оказался |
|
|
|
|
|||||
Уменьшится |
|
|
53 |
|||||||
|
пробитым. Как |
изменится |
запас |
прочности |
другого |
|
|
|
|
|
Останется неизменным |
|
7 |
||||||||
|
конденсатора? |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|||
|
Как |
изменятся |
энергия |
последовательно включенных |
Энергия увеличится, |
заряд |
25 |
|||
|
конденсаторов и их заряд при замыкании ключа К? |
|
уменьшится |
|
|
|
||||
|
|
|
|
|
|
|
Энергия увеличится, |
заряд |
87 |
|
|
|
|
|
|
|
|
не изменится |
|
|
|
|
|
|
|
|
|
|
Энергия увеличится, |
заряд |
29 |
|
|
|
|
|
|
|
|
увеличится |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
Энергия уменьшится, заряд |
80 |
||
|
|
|
|
|
|
|
не изменится |
|
|
|
|
|
|
|
|
|
|||||
|
В данной схеме C1>>C2. Какой из этих емкостей можно |
С1 |
|
|
41 |
|||||
|
пренебречь при приближенном определении Собщ? |
|
|
|
|
|
||||
|
|
С2 |
|
|
59 |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
В приведенной схеме C1>>C2. Какой из этих емкостей можно |
С1 |
|
|
51 |
|||||
|
пренебречь при приближенном определении общей емкости? |
|
|
|
|
|||||
|
С2 |
|
|
99 |
||||||
|
|
|
|
|
|
|
|
|
|
|