- •Глава 1 регулирующие системы организма и их взаимодействие
- •1.1. Нервный механизм регуляции
- •1.1.1. Виды влияний нервной системы и механизмы их реализации
- •1.1.2. Симпатическая нервная система
- •1.1.3. Парасимпатическая нервная система
- •1.1.4. Регуляция функции синапсов
- •1.1.6. Сенсорные рецепторы
- •1.17. Развитие концепции рефлекса. Нервизм и нервный центр
- •1.2. Гормональная регуляция
- •1.3. Регуляция с помощью метаболитов и тканевых гормонов. Миогенный механизм регуляции
- •1.4. Единство и особенности регуляторных механизмов.Функции гематоэнцефалического барьера
- •1.5. Системный принцип регуляции
- •1.5.1. Структура функциональных систем и мультипараметрический принцип их взаимодействия
- •1.5.2. Системогенез
- •1.6. Типы регуляции функций организма и их надежность
- •1.7. Гомеостазис
- •1.7.1. Понятия
- •1.7.2. Надежность физиологических систем, обеспечивающих гомеостазис
- •1.8. Соотношение структуры и функции
- •Глава 2
- •2.2. Функции нейронов
- •2.3. Функции органелл нейрона
- •2.4. Функциональные структуры клеточной мембраны
- •2.5. Функции клеточной мембраны нейрона
- •2.6. Механизмы транспорта веществ через клеточную мембрану нейрона
- •2.6.1. Классификация транспорта веществ и его значение
- •2.6.2. Первичный транспорт
- •2.6.4. Ионные каналы
- •2.6.5. Основные свойства нервной клетки
- •Глава 3 возбудимость и возбуждение нейронов цнс
- •3.1. Созревание цнс в онтогенезе
- •3.1.1. Закладка нервной системы
- •3.1.2. Развитие спинного мозга и спинномозговых ганглиев
- •3.1.3. Развитие продолговатого, заднего, среднего и промежуточного мозга
- •3.1.4. Развитие конечного мозга
- •3.2. Открытие «животного электричества» и его сущность
- •3.3. Мембранный потенциал покоя
- •3.3.1. Общая характеристика и непосредственная причина формирования
- •3.3.2. Роль проницаемости клеточной мембраны и ее поверхностных зарядов
- •3.3.3. Роль ионных насосов в формировании пп
- •3.4. Мембранный потенциал действия
- •3.5. Исследование ионных токов. Запас ионов в клетке
- •3.6. Локальный потенциал. Оценка проницаемости клеточной мембраны
- •3.7. Изменения возбудимости клетки во время ее возбуждения. Лабильность
- •3.8. Оценка возбудимости ткани и клетки (законы раздражения)
- •Глава 4 взаимодействие нейронов цнс
- •4.1. Проведение возбуждения по нервным волокнам
- •4.2. Особенности физиологии нервов детей
- •4.3. Физиология синапсов цнс
- •4.3.1. Структурно-функциональная характеристика синапсов
- •4.3.2. Механизм передачи сигнала в химических синапсах
- •4.3.3. Особенности проведения возбуждения в химических синапсах
- •4.3.4. Электрические синапсы цнс
- •4.4. Медиаторы и рецепторы цнс
- •4.5. Роль различных элементов нейрона в возникновении возбуждения
- •4.6. Распространение возбуждения в цнс
- •4.7. Свойства нервных центров
- •4.8. Торможение в цнс
- •4.8.2. Пресинаптическое торможение. Роль различных видов торможения
- •4.9. Координационная деятельность цнс
- •4.10. Интегрирующая роль нервной системы
- •Глава 5
- •5.1.2. Неонатальный период
- •5.1.3. Грудной возраст и другие возрастные периоды
- •5.2. Физиология спинного мозга
- •5.2.1. Структурно-функциональная характеристика
- •5.2.4. Механизм шагательного рефлекса
- •5.2.5. Регуляция тонуса мышц
- •5.3. Двигательные системы ствола мозга
- •А. В стволе мозга находятся ядра ш-хп пар черепных нервов.
- •5.4. Функции ретикулярной формации
- •5.5. Системы связей ствола мозга
- •5.6. Мозжечок
- •5.7. Промежуточный мозг
- •5.8. Базальные ганглии
- •5.9. Лимбическая система
- •5.10. Функции коры большого мозга 5.10.1. Структурно-функциональная организация коры
- •5.10.2. Локализация функций в коре большого мозга
- •5.10.3. Ассоциативные области коры
- •5.11. Нейрофизиологические
- •Глава 6 высшая нервная деятельность
- •6.1. Понятие о высшей нервной деятельности. Развитие представлений о высшей нервной деятельности
- •6.2. Методы исследования высшей нервной деятельности. Электроэнцефалограмма детей
- •6.4. Созревание условных рефлексов в онтогенезе и их характеристика
- •6.4.1. Созревание условных рефлексов в раннем онтогенезе
- •6.4.2. Характеристика условных рефлексов
- •6.5. Механизм образования условных рефлексов
- •6.6. Память*
- •6.6.1. Общая характеристика
- •6.6.2. Мгновенная и кратковременная память
- •6.6.3. Долговременная память
- •6.6.4. Роль отдельных структур мозга в формировании памяти
- •6.6.5. Нарушения памяти
- •6.7. Формы научения
- •6.8. Торможение условных рефлексов
- •6..9. Учение о типах высшей нервной деятельности
- •6.9.1. Характеристика основных типов внд животных и человека и методов их определения
- •Неуравновешенный (холерик)
- •6.9.2. Типологические варианты личности детей
- •6.9.3. Особенности внд подростков (свойства нервной системы)
- •6.9.4. Основные положения по формированию типологических особенностей внд детей
- •6.9.5. Развитие свойств нервных процессов и влияние на них генотипа и среды
- •6.9.6. Роль генотипа и среды в формировании личности
- •6.10. Анализаторы и приспособительное поведение организма
- •6.10.1. Структурно-функциональная характеристика и роль анализаторов, регуляция их деятельности
- •6.10.2. Свойства анализаторов и приспособление организма к окружающей среде
- •6.10.3. Кодирование информации в анализаторах
- •6.11. Формы психической деятельности
- •6.12. Эмоции (чувства) и их развитие в онтогенезе
- •6.13. Электрофизиологические корреляты психической деятельности детей
- •6.13.1. Психическая деятельность и электроэнцефалограмма
- •6.13.2. Психическая деятельность и вызванные потенциалы
- •6.14. Особенности когнитивных процессов
- •6.15.1. Деятельность и мышление человека. Нарушения мышления у детей
- •6.15.2. Вторая сигнальная система. Этапы развития познавательной способности у детей
- •6.15.3. Открытие центров речи. Восприятие и воспроизведение речи
- •6.15.4. Развитие речи и пластичность речевой функции в онтогенезе
- •6.15.6. Латерализация функций
- •6.15.7. Социально детерминированное сознание*
- •6.15.8. Осознаваемая и подсознательная деятельность мозга
- •6.16. Гнозис и праксис и их нарушения
- •6.17. Бодрствование и сон. Сновидения
- •6; 17.1. Сон и сновидения, оценка глубины сна, значение сна
- •6.17.2. Механизмы бодрствования и сна
- •6.18. Принципы организации поведенческих реакций
- •6.19. Этапы формирования внд у детей
- •Глава 1. Регулирующие системы организма и их взаимодействие 6
- •Глава 2. Основы жизнедеятельности нейронов 65
- •Глава 3. Возбудимость и возбуждение нейронов цнс 94
- •Глава 4. Взаимодействие нейронов цнс 134
- •Глава 5. Структуры и функции отделов мозга (иерархия
- •Глава 6. Высшая нервная деятельность 240
- •Смирнов Виктор Михайлович Нейрофизиология и высшая нервная деятельность детей и подростков Учебное пособие
- •105043, Москва, ул. 8-я Парковая, 25.
3.6. Локальный потенциал. Оценка проницаемости клеточной мембраны

А. Локальный потенциал. При раздражении возбудимой ткани не всегда возникает ПД. В частности, если сила раздражителя мала, то деполяризация не достигнет критического уровня, естественно, не возникнет импульсного распространяющего возбуждения. В этом случае ответ ткани на раздражение будет носить форму локального потенциала. Локальными потенциалами возбудимых клеток также являются: возбуждающий постсинапти-ческий потенциал, рецепторные потенциалы, тормозный постси-наптический потенциал. Величина локальных потенциалов весьма вариабельна, она может достигать 10-30 мВ в зависимости от вида клеток. Свойства такого ответа существенно отличаются от импульсного (табл. 3.2).

|
1 |
2 |
3 |
|
Явление суммации Амплитуда Возбудимость ткани при возникновении потенциала |
Суммируется - возрастает при повторных частых подпороговых раздражениях 10-30 мВ Увеличивается |
Не суммируется 80-110 мВ Уменьшается вплоть до полной невозбудимости (рефрактер-ность) |
Повышение возбудимости клетки во время локального потенциала объясняется тем, что клеточная мембрана оказывается частично деполяризованной. Если Екр остается на постоянном уровне, то для достижения критического уровня деполяризации во время локального потенциала нужен значительно меньшей силы раздражитель. Амплитуда ПД не зависит от силы раздражения, потому что он возникает вследствие регенеративного процесса. Причина невозбудимости клетки при возникновении ПД рассматривается в разделе 3.7.
Б. Состояние проницаемости клеточной мембраны можно определить по скорости движения ионов в клетку или из клетки согласно концентрационному градиенту, т. е по проводимости ионов Na+ и К+ (gNa и gK), но при условии, что влияние электрического градиента на движение ионов исключено или оно постоянное. Последнее условие выполняется с помощью методики фиксации напряжения (voltage-clamp) на постоянном уровне. Изменения проводимости ионов Na+ и К+ представлены на рис. 3.5.
Проницаемость клеточной мембраны для ионов СЬ во время развития ПД не изменяется. Естественно, ион СЬв возникновении ПД участия не принимает.
3.7. Изменения возбудимости клетки во время ее возбуждения. Лабильность
А. Возбудимость клетки во время ее возбуждения быстро и сильно изменяется. Различают несколько фаз изменения возбудимости, каждая из которых строго соответствует определенной фазе ПД и, так же как и фазы ПД, определяется состоянием проницаемости клеточной мембраны для ионов. Схематично эти изменения представлены на рис. 3.6,6.
Кратковременное повышение возбудимости в начале развития ПД, когда уже возникла частичная деполяризация клеточной мембраны. Если деполяризация не достигает критической величины, то регистрируется локальный потенциал. В случае, если деполяризация достигает Екр, то развивается ПД. При замедленном развитии начальной деполяризации она оценивается как препо-тенциал. Возбудимость повышена потому, что клетка частично деполяризована, мембранный потенциал приближается к критическому уровню, поскольку открывается часть потенциалчувствительных быстрых Na-каналов. При этом достаточно небольшого увеличения силы раздражителя, чтобы деполяризация достигла Екр, при которой возникает ПД.
Абсолютная рефрактерная фаза - это полная невозбудимость клетки (возбудимость равна нулю), она соответствует пику ПД и продолжается 1-2 мс; если ПД более продолжителен, то более продолжительна и абсолютная рефрактерная фаза. Клетка в этот период при любой силе раздражения не отвечает. Невозбудимость клетки в фазу деполяризации и инверсии (в первую ее половину - восходящая часть пика ПД) объясняется тем, что потенциалзависимые т-ворота Na-каналов уже открыты и ионы Na+ быстро поступают в клетку по всем каналам. Те ворота Na-каналов, которые еще не успели от-

крыться, открываются под влиянием деполяризации - уменьшения мембранного потенциала. Поэтому дополнительное раздражение клетки относительно движения ионов Na+ в клетку ничего изменить не может. Именно поэтому ПД либо совсем не возникает на раздражение, если оно мало, либо возникает максимальным, если оно достаточной силы (пороговой или сверхпороговой). В период нисходящей части фазы инверсии и реполяризации клетка невозбудима потому, что закрываются инактивационные h-ворота Na-каналов, в результате чего клеточная мембрана непроницаема для иона Na+ да же при сильном раздражении. Кроме того, в этот период открываются уже в большом количестве К-каналы, К+ быстро выходит из клетки, обеспечивая нисходящую часть фазы инверсии и реполяризацию. Абсолютная рефрактерная фаза в процессе реполяризации продолжается до момента, когда мембранный потенциал будет примерно на уровне Екр. В это время около половины №+-каналов возвращается в исходное состояние, поэтому возможна их новая активация. Абсолютный рефрактерный период ограничивает максимальную частоту генерации ПД. Если абсолютный рефрактерный период завершается через 2 мс после начала ПД, то клетка может вожбуждаться с частотой максимум 500 имп/с. Существуют клетки с еще более коротким рефрактерным периодом, в которых возбуждение может в крайних случаях повторяться с частотой 1000 имп/с. Такие клетки встречаются в ретикулярной формации ЦНС.
Относительная рефрактерная фаза - это период восстановления возбудимости, когда сильное раздражение может вызвать новое возбуждение (см. рис. 3.6,6, кривая 3). Относительная рефрактерная фаза соответствует конечной части фазы реполяризации от уровня Екр ± 10 мВ и следовой гиперполяризации клеточной мембраны, что является следствием все еще повышенной проницаемости для ионов К+ и избыточного выхода ионов К+-каналов из клетки. Поэтому, чтобы вызвать возбуждение в этот период, необходимо приложить более сильное раздражение, так как часть Ыа+-каналов в конце реполяризации находится еще в состоянии инактивации, а выход ионов К+ из клетки препятствует ее деполяризации. Кроме того, в период следовой гиперполяризации мембранный потенциал больше и, естественно, дальше отстоит от критического уровня деполяризации. Если реполяризация в конце пика ПД замедляется (см. рис. 3.6,а), то относительная рефрактерная фаза включает и период замедления реполяризации, и период гиперполяризации.
Фаза экзачыпации - это период повышенной возбудимости. Он соответствует следовой деполяризации. В нейронах ЦНС вслед за гиперполяризацией возможна частичная деполяризация клеточной мембраны. В эту фазу очередной ПД можно вызвать более слабым раздражением, поскольку мембранный потенциал несколько ниже обычного и оказывается ближе к критическому уровню деполяризации, что объясняют повышенной проницаемостью клеточной мембраны для ионов Na+. Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность.
Б. Лабильность, или функциональная подвижность (Н.Е.Введенский) - это скорость протекания одного цикла возбуждения, т.е. ПД. Как видно из определения, лабильность ткани зависит от длительности ПД. Это означает, что лабильность, как и ПД,

Мерой лабильности является максимальное число ПД, которое ткань может воспроизвести в 1 с. В эксперименте лабильность исследуют в процессе регистрации максимального числа ПД, которое может воспроизвести клетка при увеличении частоты ритмического раздражения.
Лабильность различных клеток существенно различается. Так, лабильность нерва равна 500-1000, нейронов - 20-200, синапса -порядка 100 импульсов в секунду. Лабильность клеток понижается при длительном бездействии и при утомлении.
Следует отметить, что при постепенном увеличении частоты ритмического раздражения лабильность ткани повышается, т.е. ткань отвечает более высокой частотой возбуждения по сравнению с исходной частотой. Это явление открыто А.А.Ухтомским и называется усвоением ритма раздражения.
