Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
546
Добавлен:
18.03.2016
Размер:
11.28 Mб
Скачать

2.2. Функции нейронов

Жизнь животного организма сосредоточена в клетке. У каждой клетки имеются общие (основные) функции, одинаковые с функ­циями других клеток, и специфические, свойственные в основном данному виду клеток.

А. Функции нейрона, идентичные общим функциям любых кле­ток организма. 1. Синтез тканевых и клеточных структур, а также необходимых для жизнедеятельности соединений (анаболизм). При этом энергия не только расходуется, но и накапливается, по­скольку клетка усваивает органические соединения, богатые энер­гией (белки, жиры и углеводы, поступающие в организм с пищей). В клетку питательные вещества поступают, как правило, в виде продуктов гидролиза белков, жиров, углеводов (мономеров) - это моносахара, аминокислоты, жирные кислоты и моноглицериды. Процесс синтеза обеспечивает восстановление структур, подвер­гающихся распаду.

  1. Выработка энергии в результате катаболизма - совокупно­ сти процессов распада клеточных и тканевых структур и сложных соединений, содержащих энергию. Энергия необходима для обес­печения жизнедеятельности каждой живой клетки.

  2. Трансмембранный перенос веществ, обеспечивающий поступ­ление в клетку необходимых веществ и выделение из клетки мета­болитов и веществ, используемых другими клетками организма.

Б. Специфические функции нервных клеток ЦНС и перифериче­ского отдела нервной системы.

  1. Восприятие изменений внешней и внутренней среды организма. Эта функция осуществляется прежде всего с помощью перифери­ ческих нервных образований ™ сенсорных рецепторов (см. раз­ дел 1.1.6) и посредством шипикового аппарата дендритов и тела нейрона (см. раздел 2.1).

  2. Передача сигнала другим нервным клеткам и клеткам- эффекторам: скелетной мускулатуры, гладким мышцам внутрен­ них органов, сосудам, секреторным клеткам. Эта передача реали­ зуется с помощью синапсов (см. раздел 43).

  3. Переработка поступающей к нейрону информации посредст­ вом взаимодействия возбуждающих и тормозящих влияний при­ шедших к нейрону нервных импульсов (см. раздел 4.5-4.8).

  4. Хранение информации с помощью механизмов памяти (см. раз­ дел 6.6). Любой сигнал внешней и внутренней среды организма вначале преобразуется в пр"ОцеСс возбуждения, который является наиболее Характерным проявлением активности любой нервной клетки.

  1. Нервные импульсы обеспечивают связь между всеми клетками организма и регуляцию их функций (см. раздел 1.1).

  2. С помощью химических веществ нервные клетки оказывают трофическое влияние на эффекторные клетки организма (питание; см. раздел 1.1).

Жизнедеятельность самой нервной клетки обеспечивается взаимодействием всех ее органелл и клеточной мембраны (совокупность структурных элементов, образующих оболочку клетки), как и любой другой клетки организма.

2.3. Функции органелл нейрона

Органеллы нейрона находятся в гиалоплазме. состоящей из воды и находящихся в ней различных ионов и органических ве­ществ (глюкоза, аминокислоты, белки, фосфолипиды, холесте­рин). Гиалоплазма является внутренней средой нейрона, обеспе­чивающей взаимодействие всех клеточных структур друг с дру­гом посредством транспорта веществ, потребляемых и синте­зируемых клеткой. Гиалоплазма выполняет также функцию депо гликогена, липидов, пигментов. Большинство внутриклеточных органелл (мембранные органеллы: ядро, эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы) имеет собственные мембраны, построенные по тому же принципу, что и клеточные мембраны (см. раздел 2.3). Некоторые внутрикле­точные органеллы не имеют собственных мембран (немем­бранные органеллы: рибосомы, микротрубочки, микрофиламен-ты и промежуточные филаменты). Каждая органелла выполняет свои специфические функции.

А. Мембранные органеллы цитоплазмы. Эндоплазматический ретикулум представляет собой систему канальцев, уплощенных цистерн и мелких пузырьков. Строение мембраны ретикулума по­добно строению клеточной мембраны. Функции эндоплазматиче-ского ретикулума:

  • является резервуаром для ионов, в том числе Са2+ - одного из вторых посредников в реализации различных специфических реакций клеток, например в электромеханическом сопряже­ нии;

  • обеспечивает синтез и транспорт различных веществ, в том числе молекул белков, липидов;

  • обеспечивает детоксикацию (в клетках печени) ядовитых ве­- ществ, попадающих в организм с пищей или вдыхаемых с воз­ духом, а также биологически активных метаболитов, например простагландинов, желчных кислот, стероидных гормонов, подлежащих удалению из организма. Эти вещества в результате превращений выводятся с мочой и желчью в виде глюкуроновых и сульфуроновых соединений.

Аппарат Гольджи представляет собой систему упакованных уплощенных мешочков (цистерн), вакуолей и транспортных пузырьков. Его функции тесно связанны с функциями эндоплазматического ретикулума, от которого отделяются транспортные пузырьки и сливаются с аппаратом Гольджи. Он обеспечивает этап формирования и созревания всех секретируемых клеткой продуктов, в частности ферментов лизосом, белков, гликопротеидов клеточной мембраны. Секреторные пузырьки постоянно отделяются от аппарата Гольджи, транспортируются к клеточной мембране и сливаются с ней, а содержание в пузырьках вещества выводятся из клетки в процессе экзоцитоза.

Лизосомы – это отпочковавшиеся от аппарата Гольджи в виде мешочков участки, содержащие большое количество (более 50) различных кислых гидролаз. Основной функцией лизосом является переваривание поступающих в клетку белков, нуклеиновых кислот, и углеводов, жиров, фагоцитированных бактерий и клеток, гранул гикогена. Это внутриклеточная пищеварительная система. Отделившаяся от аппарата Гольджи лизосома называется первичной, она перемещается к пузырьку, образовавшемуся в результате пино- или фагоцитоза, и изливает свое содержимое в пузырек – образуется вторичная лизосома, в которой происходит расщепление содержащихся внутри нее веществ. Продукты расщепления поступают из вторичной лизосомы в гиалоплазму и используется для питания и обновления клетки. Остатки вторичных лизосом выделяются клеткой в процессе экзоцитоза. Лизосомы содержат лизоцим, растворяющий мембрану фагоцитированных бактериальных клеток; лактоферрин, связывающий железо, необходимое для поддержания роста бактерий, и тем самым угнетающий их размножение. Кислая среда лизосом (рН около 5) тормозит обмен веществ бактерий и ускоряет их гибель. Если мембрану лизосом повреждают ультразвук, свободные радикалы: супероксидный радикал О2 перекись водорода Н2 О2, то ферменты лизосом могут расщеплять клеточную мембрану. Кортизол защищает мембрану лизосом. Лизосомы обеспечивают регрессию физиологически увеличенной массы ткани: например, матки после родов, молочных желез после лактации.

Пероксисомы- разновидность лизосом, содержащих главным образом ферменты, катализирующие образование и разложение перекиси водорода – одного из важнейших окислителей в организме. Перекись водорода образуется под влиянием оксидаз, а расщепляется под действием пероксидаз или каталаз.

Митохондрии называют энергетическими станциями клеток, так как в них вырабатывается (освобождается) основное количество энергии из поступающих в организм питательных веществ. Они выполняют ряд других функций: например, участвуют в синтезе фосфолипидов, жирных кислот. Митохондрии представляют собой округлые, овальные или удлиненные образования с двойной мембраной – наружной и внутренней, каждая из которых состоит из бислоя липидно-белковых молекул. Внутренняя мембрана имеет выросты (кристы), обращенные внутрь митохондрий, содержимое последней называют матриксом. В кристах и внутренней мембране митохондрий содержатся дыхательные ферменты – переносчики электронов, в матриксе – ферменты цикла Кребса. В результате реакций обеих ферментных систем питательные вещества окисляются до конечных продуктов – воды и углекислого газа с освобождением аммиака и выделением энергии; энергия используется для синтеза АТФ. Молекулы АТФ диффундируют в гиалоплазму и используются клеткой для выполнения всех ее функций.

Число митохондрий в клетке весьма вариабельно – от 20 до 5* 10 в 5, оно может изменяться в каждой клетке и определяется ее потребностями.Обновление митохондрий и синтез новых обеспечивает ДНК и РНК, содержащимися в митохондриях. Матрикс митохондрий содержит также ферменты, участвующие в синтезе жирных кислот; имеются соли кальция и магния. Окислительные процессы происходят и в наружной мембране, но главную роль в выделении энергии играют внутренняя мембрана и матрикс. Энергия образуется и в гиалоплазме клетки в результате анаэробного расщипления глюкозы (гликолиз), при этом из каждой молекулы глюкозы образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты,которая, как жирные кислоты и аминокислоты, превращается в ацетил-коэнзим А (ацетил КоА). Последний поступает в митохондрий и окисляется до воды и СО2 с выделением энергии, которая запасается и расходуется также в виде АТФ. При этом из одной молекулы пировиноградной кислоты образуется 15 молекул АТФ. В итоге из одной молекулы глюкозы образуется 32 молекулы АТФ (или 38 в зависимости от путей доставки восстановительных эквивалентов в митохондрии). Тем не менее запасы АТФ в клетке невелики, они обеспечивают работу клетки только в течении нескольких секунд, Энергия накапливается также в виде других органических фосфатных соединений – фосфагенов (это характерно для скелетной и сердечной мышц, для нервных клеток). Наиболее важным фосфагеном является креатинфосфат, энергия которого идет на ресинтез израсходованной АТФ.

Рибосомы – плотные частицы, состоящие из рибосомных РНК (рРНК) и белка, причем рРНК составляет примерно 60% от всей массы рибосомы, функцией которой является синтез белков. Ри­босомы располагаются либо свободно в гиалоплазме, либо со­единены с эндоплазматическим ретикулумом. Отдельные рибосо­мы соединяются в более крупные агрегаты - полирибосомы, ко­торые образуются с помощью информационной РНК (иРНК) Информацию о синтезе белка приносят от ядра иРНК, аминокис­лоты доставляются транспортной РНК (тРНК). Рибосомы, сво­бодно лежащие в гиалоплазме, синтезируют белок для использо­вания самой клеткой, а рибосомы, связанные с эндоплазматиче­ским ретикулумом, синтезируют белок, который выводится из клетки, образуя межклеточное вещество, секреты. На рибосомах синтезируются различные по функции белки: ферменты, белки-переносчики, рецепторы, компоненты цитоскелета.

Б. Немембранные органеллы цитоплазмы - это фибриллярные компоненты, включающие микротрубочки, микрофиламенты и про­межуточные филаменты (микрофибриллы). Микротрубочки обра­зуются в результате полимеризации белка тубулина. В аксонах и дендритах нейронов микротрубочки участвуют в транспорте раз­личных веществ со скоростью 1-2 мм/сут -медленный транспорт и несколько сотен миллиметров в сутки - быстрый транспорт. Мик­рофиламенты - очень тонкие белковые нити диаметром 5-7 нм, состоят в основном из белка актина, близкого к мышечному; име­ется небольшое количество миозина, Промежуточные филаменты -это образованные макромолекулами белков нити. Белковый со­став промежуточных филаментов тканеспецифичен. Расположен­ные параллельно внутренней стороне клеточной мембраны и пронизывающие всю гиалоплазму, они образуют различные свя­зи между микротрубочками и микрофиламентами. Совокуп­ность фибриллярных компонентов образует цитоскелет. обеспе­чивающий поддержание формы клетки, внутриклеточное пере­мещение мембранных органелл и движение'некоторых клеток -их сократительную функцию. Разнонаправленное расположение различных элементов повышает жесткость и прочность цитоске­лета. Наиболее прочной составной частью цитоскелета являются промежуточные филаменты. Компоненты цитоскелета участвуют в организации митотических веретен, в процессах морфогенеза, обеспечивают движение мембраны клеток во время эндо- и экзо- цитоза.

В. Ядро несет генетическую информацию и обеспечивает регу­ляцию синтеза белка в клетке. Это самая большая органелла клетки. Ядро состоит из ядерной оболочки (мембрана), хрома­тина, ядрышка и кариоплазмы. Оболочка ядра представлена двумя мембранами, просвет между которыми сообщается с по­лостью эндоплазматического ретикулума. Оболочка имеет поры размером около 100 нм, что обеспечивает проход РНК, рибо-нуклеаз, обмен других веществ между ядром и цитоплазмой. На наружной ядерной мембране располагаются рибосомы, на кото­рых синтезируется белок. Ядрышко - внутриядерное округлое образование, не имеющее мембраны. В нем синтезируется рРНК и образуются рибосомы. В ядрышке имеются также белки и ДНК. Хроматин состоит из многих витков ДНК, связанных с белками - основными и кислыми. Хроматин содержит также РНК. Молекула ДНК по всей длине имеет отрицательный заряд, что обеспечивает присоединение к ней положительно заряжен­ных молекул белков. Комплекс ДНК и белков - это главные компоненты хромосомы - генетического аппарата клетки. Он выполняет две главные функции: генетическую (хранение и пе­редача генетической информации) и метаболическую - управле­ние синтезом белка, которое включает два этапа. Этап I - созда­ние на матрице ДНК иРНК, которая содержит код управления синтезом определенного белка. Кодом иРНК является последо­вательность расположения нуклеотидов, повторяющая генетиче­ский код ДНК. Этот этап называется транскрипцией. Этап II (трансляция) происходит на рибосомах: иРНК, синтезированная в ядре, через поры ядра поступает в рибосомы, где осуществля­ется сборка полипептида (белка) из аминокислот, доставляемых тРНК. Последняя синтезируется также в ядре клетки.