Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0554541_86F5E_mankiw_n_gregory_macroeconomics.pdf
Скачиваний:
411
Добавлен:
16.03.2015
Размер:
3.88 Mб
Скачать

C H A P T E R 1 4 A Dynamic Model of Aggregate Demand and Aggregate Supply | 423

aggregate supply curve in that period, which in turn affects output and inflation in period t + 1, which then affects expected inflation in period t + 2, and so on.

These linkages of economic outcomes across time periods will become clear as we work through a series of examples.

14-3 Using the Model

Let’s now use the dynamic AD –AS model to analyze how the economy

responds to changes in the exogenous variables. The four exogenous variables in

 

 

 

the model are the natural level of output Yt, the supply shock ut, the demand

shock

et

, and the central bank’s inflation target

p t

 

*. To keep things simple, we will

assume that the economy always begins in long-run equilibrium and is then subject to a change in one of the exogenous variables. We also assume that the other exogenous variables are held constant.

Long-Run Growth

The economy’s natural level of output Yt changes over time because of pop-

ulation growth, capital accumulation, and technological progress, as discussed

in Chapters 7 and 8. Figure 14-5 illustrates the effect of an increase in Yt. Because this variable affects both the dynamic aggregate demand curve and

the dynamic aggregate supply curve, both curves shift. In fact, they both shift

to the right by exactly the amount that Yt has increased.

FIGURE 14-5

Inflation, p

1. When the natural

level of output increases, . . .

3. . . . as does

Yt

Yt + 1

2. . . . the dynamic AS

the dynamic

 

 

 

 

 

 

curve shifts to the right, . . . .

AD curve, . . .

 

 

 

 

 

 

 

 

 

 

 

DASt

 

 

 

 

DASt + 1

5. . . . and

A

B

 

 

stable inflation.

 

 

 

 

 

 

DADt

DADt + 1

 

Yt

 

Yt + 1

Income, output, Y

 

4. . . . leading to

 

 

growth in ouput . . .

 

An Increase in the Natural Level of Output Ifthe natural level of output Yt increases, both the dynamic aggregate demand curve and the dynamic aggregate supply curve shift to the right by the same amount. Output Yt increases, but inflation pt remains the same.

424 | P A R T I V Business Cycle Theory: The Economy in the Short Run

The shifts in these curves move the economy’s equilibrium in the figure from

point A to point B. Output Y

increases by exactly as much as the natural level

t

Yt

. Inflation is unchanged.

 

The story behind these conclusions is as follows: When the natural level of output increases, the economy can produce a larger quantity of goods and services. This is represented by the rightward shift in the dynamic aggregate supply curve. At the same time, the increase in the natural level of output makes people richer. Other things equal, they want to buy more goods and services. This is represented by the rightward shift in the dynamic aggregate demand curve. The simultaneous shifts in supply and demand increase the economy’s output without putting either upward or downward pressure on inflation. In this way, the economy can experience long-run growth and a stable inflation rate.

A Shock to Aggregate Supply

Consider now a shock to aggregate supply. In particular, suppose that ut rises to 1 percent for one period and subsequently returns to zero. This shock to the Phillips curve might occur, for example, because an international oil cartel pushes up prices or because new union agreements raise wages and, thereby, the costs of production.

In general, the supply shock

ut

 

captures any event that influences inflation beyond

expected inflation Et −1pt and current economic activity, as measured by Yt Yt. Figure 14-6 shows the result. In period t, when the shock occurs, the dynam-

ic aggregate supply curve shifts upward from DASt −1 to DASt. To be precise, the

FIGURE 14-6

 

 

 

 

 

 

 

 

Inflation, p

 

 

 

 

 

 

 

DASt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yall

 

 

 

 

 

 

DASt + 1

2. . . . causing

 

 

 

 

 

 

 

inflation to

 

 

B

 

 

 

 

 

rise . . .

pt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DASt – 1

 

pt + 1

 

 

 

C

 

 

pt – 1

 

 

 

A

 

 

1. An adverse supply

 

 

 

 

 

 

 

shock shifts the DAS

 

 

 

 

 

 

 

 

 

 

curve upward, . . .

 

 

 

 

 

 

 

 

 

 

DADall

 

 

 

 

 

 

 

 

 

 

3. . . . and output to fall.

Yt

Yt – 1

Income, output, Y

 

 

Yt + 1

 

A Supply Shock A supply shock in period t shifts the dynamic aggregate supply curve upward from DASt −1 to DASt. The dynamic aggregate demand curve is unchanged. The economy’s short-run equilibrium moves from point A to point B. Inflation rises and output falls. In the subsequent period (t + 1), the dynamic aggregate supply curve shifts to DASt +1 and the economy moves to point C. The supply shock has returned to its normal value of zero, but inflation expectations remain high. As a result, the economy returns only gradually to its initial equilibrium, point A.

C H A P T E R 1 4 A Dynamic Model of Aggregate Demand and Aggregate Supply | 425

curve shifts upward by exactly the size of the shock, which we assumed to be 1 percentage point. Because the supply shock ut is not a variable in the dynamic aggregate demand equation, the DAD curve is unchanged. Therefore, the economy moves along the dynamic aggregate demand curve from point A to point B. As the figure illustrates, the supply shock in period t causes inflation to rise to pt and output to fall to Yt.

These effects work in part through the reaction of monetary policy to the shock. When the supply shock causes inflation to rise, the central bank responds by following its policy rule and raising nominal and real interest rates. The higher real interest rate reduces the quantity of goods and services demanded, which depresses output below its natural level. (This series of events is represented by the movement along the DAD curve from point A to point B.) The lower level of output dampens the inflationary pressure to some degree, so inflation rises somewhat less than the initial shock.

FYI

The Numerical Calibration and Simulation

The text presents some numerical simulations of the dynamic AD–AS model. When interpreting these results, it is easiest to think of each period as representing one year. We examine the impact of the change in the year of the shock (period t) and over the subsequent 12 years.

The simulations use these parameter values:

=

Yt 100.

p* = 2.0.

t

a = 1.0. r = 2.0. f = 0.25.

vp = 0.5. vY = 0.5.

Here is how to interpret these numbers. The nat-

ural level of output Y is 100; as a result of choos-

t

ing this convenient number, fluctuations in Yt Yt can be viewed as percentage deviations of output from its natural level. The central bank’s inflation

target p* is 2 percent. The parameter a = 1.0

t

implies that a 1-percentage-point increase in the real interest rate reduces output demand by 1, which is 1 percent of its natural level. The econo-

my’s natural rate of interest r is 2 percent. The Phillips curve parameter f = 0.25 implies that when output is 1 percent above its natural level, inflation rises by 0.25 percentage point. The parameters for the monetary policy rule vp = 0.5 and vY = 0.5 are those suggested by John Taylor and are reasonable approximations of the behavior of the Federal Reserve.

In all cases, the simulations assume a change of 1 percentage point in the exogenous variable of interest. Larger shocks would have qualitatively similar effects, but the magnitudes would be proportionately greater. For example, a shock of 3 percentage points would affect all the variables in the same way as a shock of 1 percentage point, but the movements would be three times as large as in the simulation shown.

The graphs of the time paths of the variables after a shock (shown in Figures 14-7, 14-9, and 14-11) are called impulse response functions. The word “impulse” refers to the shock, and “response function” refers to how the endogenous variables respond to the shock over time. These simulated impulse response functions are one way to illustrate how the model works. They show how the endogenous variables move when a shock hits the economy, how these variables adjust in subsequent periods, and how they are correlated with one another over time.

426 | P A R T I V Business Cycle Theory: The Economy in the Short Run

In the periods after the shock occurs, expected inflation is higher because expectations depend on past inflation. In period t + 1, for instance, the economy is at point C. Even though the shock variable ut returns to its normal value of zero, the dynamic aggregate supply curve does not immediately return to its initial position. Instead, it slowly shifts back downward toward its initial position DASt −1 as a lower level of economic activity reduces inflation and thereby expectations of future inflation. Throughout this process, output remains below its natural level.

Figure 14-7 shows the time paths of the key variables in the model in response to the shock. (These simulations are based on realistic parameter values: see the

FIGURE 14-7

(a) Supply Shock

vt

2.0

 

 

 

1.5

 

 

 

1.0

 

 

 

0.5

 

 

 

0.0

 

 

 

–0.5

 

 

 

–1.0

 

 

 

–1.5

 

 

 

–2.0

t

t + 2 t + 4 t + 6 t + 8 t + 10 t + 12

 

t – 2

 

 

 

Time

The Dynamic Response to a Supply Shock This figure shows the responses of the key variables over time to a onetime supply shock.

 

 

 

 

 

 

 

(b) Output

 

 

 

 

 

 

 

(d) Inflation

Yt 101.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pt 3.5%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t – 2 t t + 2 t + 4 t + 6 t + 8 t + 10 t + 12

 

t – 2 t t + 2 t + 4 t + 6 t + 8 t + 10 t + 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time

 

 

 

 

 

(c) Real Interest Rate

 

 

 

 

(e) Nominal Interest Rate

rt 3.0%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it 6.0%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t – 2 t t + 2 t + 4 t + 6 t + 8 t + 10 t + 12

 

t – 2 t t + 2 t + 4 t + 6 t + 8 t + 10 t + 12

 

 

 

 

Time

Time