
- •Санкт-петербургский государственный университет физический факультет
- •С.В.Карпов фононы в кристаллах и гетероструктурах
- •Санкт-Петербургский государственный университет
- •Фононы в кристаллах и гетероструктурах
- •1. Симметрия кристаллов
- •1.1. Кристаллическая решетка
- •1.2. Элементы симметрии кристалла
- •Типы плоскостей скольжения
- •1.3. Сингонии и кристаллические классы
- •Кристаллические системы – сингонии
- •1 Тип решетки Браве
- •1 Тип кристаллического класса
- •1 Тип выбора частичной трансляции r для каждой операции группы r
- •Распределение кристаллических классов по сингониям
- •1.4. Классификация возбуждений в кристаллах
- •Неприводимые представления группы трансляций
- •1.5. Классификация возбуждений для фактор-группы
- •2. Ристаллический периодический потенциал
- •2.1. Общая модель твердого тела. Гамильтониан
- •2.2. Адиабатическое приближение
- •3. Зонные состояния периодических систем
- •3.1. Линейная моноатомная цепочка
- •Постановка решения в виде функции Блоха
- •3.2. Дисперсионные соотношения (закон дисперсии)
- •Двухпроводная электрическая линия
- •2. Акустические колебания в системе резонаторов
- •3. Связанные маятники
- •Электромагнитные волны в атмосфере
- •5. Многоатомная линейная цепочка
- •Однородный упругий стержень и стержень с периодической плотностью
- •Волны де-Бройля
- •3.3. Уравнение Матье и зонная структура
- •3.4. Фазовая и групповая скорость волн в диспергирующей среде
- •4. Фононы в идеальных кристаллах
- •4.1. Линейная двухатомная цепочка
- •4.2. Колебания трехмерной решетки
- •4.3. Обратная решетка и зона Бриллюэна
- •4.4. Ход ветвей колебаний в зоне
- •4.5. Расчеты колебаний кристаллов
- •Как известно, коэффициенты Lkl являются элементами матрицы, для которой выполнено:
- •4.6. Функция распределения плотности частот
- •Особенности функции g(), обусловленные различными критическими точками
- •5. Полярные колебания в кристаллах
- •5.1. Продольные и поперечные акустические колебания
- •Поэтому:
- •5.2. Поперечные и продольные оптические колебания
- •5.3. Соотношения Лиддейна-Сакса-Теллера
- •Отсюда следует, что
- •5.4. Реальные состояния. Эффект "запаздывания". Поляритон
- •Первые два уравнения, как известно, дают
- •6. Квантовомеханическое представление колебаний
- •6.1. Нормальные колебания.
- •6.2. Фононы
- •6.3. Гармонический осциллятор
- •Решение стационарного уравнения Шредингера
- •6.4. Операторы рождения и уничтожения фононов
- •6.5. Ангармонический осциллятор и кристалл
- •6.6. Фонон-фононные взаимодействия
- •7.1. Низкоразмерные 3d, 2d, 1d, 0d системы
- •7.2. Фононы в объемных и ограниченных структурах
- •7.3. Размерно-ограниченные кристаллические среды.
- •7.4. Приближение упругого континуума.
- •7.5. Рамановское рассеяние на сложенных акустических фононах (folding phonons)
- •7.6. Приближение механического континуума.
- •7.7. Рамановское рассеяние на квантованных оптических фононах
- •7.8. Приближение диэлектрического континуума
- •7.9. Рамановское рассеяние на интерфейсных модах
- •8.1. Модель упругого континуума. Лэмбовская мода
- •8.2. Модель механического континуума
- •8.3. Модель диэлектрического континуума
- •8.4. Расчеты колебательных спектров нанокристаллов
- •Оглавление
- •I. Симметрия и структура кристаллов
- •II. Кристаллический периодический потенциал
- •III. Зонные состояния периодических систем
6. Квантовомеханическое представление колебаний
6.1. Нормальные колебания.
Рассмотрение решений колебательной задачи трехмерного кристалла указывает, что каждый атом (n,l) может участвовать в колебаниях, отличающихся волновым вектором k, амплитудой A и частотой j(k):
.
Произвольное движение атомов Uln может быть представлено как линейная суперпозиция отдельных гармонических движений, отличающихся волновым вектором k (а значит и частотой j(k)) и номером ветви j:
Здесь величины
– весовые множители, характеризующий относительный вклад в амплитуду движения атома с номером (n,l) конкретной моды с волновым вектором k и частотой j(k). Суммирование в этом выражении производится по всем N возможным дискетным значениям волнового вектора k=(2/Na)p и по 3s ветвям с номером j.
Полная энергия E (кинетическая T и потенциальная V) колеблющейся решетки имеет вид:
.
Член, отвечающий кинетической энергии достаточно прост – это сумма кинетических энергий определенных частиц кристалла. Поэтому суммирования происходит по всем точкам физического пространства кристалла. Член, описывающий потенциальную энергию, имеет другой вид, – это сумма перекрестных членов, относящихся к разным точкам реального пространства. Это связано с тем, что потенциальная энергия зависит от взаимных смещений атомов, находящихся в разных узлах решетки.
Ясно, что подходящим преобразованием исходных координат uln можно перейти к новым координатам Qj(k), в которых и кинетическая и потенциальная энергия кристалла будет представлена в виде суммы квадратов, т.е. будет отсутствовать перекрестные члены. Физический смысл преобразования, приводящего к диагональному виду сразу две квадратичные формы, достаточно ясен. Первым шагом нужно выбрать такое преобразование исходных координат, которое диагонализирует первую квадратичную форму. Это всегда можно сделать, поскольку в координатах, совпадающих с главными полуосями поверхности второго порядка (гиперэллипсоида), с которой ассоциируется квадратичная форма, она будет диагонализирована. При этом вторая квадратичная форма изменится, но в общем случае диагональной не станет. Вторым шагом можно проделать преобразование, при котором гиперэллипсоид первой формы преобразуется в гиперсферу, а вторая квадратичная форма опять останется недиагональной. Последним шагом явится такое преобразование координат, при котором координаты могут быть выбраны совпадающими с главными полуосями гиперповерхности второго порядка, соответствующей второй квадратичной форме. В этих координатах вторая квадратичная форма будет диагонализирована, в то же время первая квадратичная форма останется квадратичной, поскольку была гиперсферой.
Выбранные таким образом координаты называются нормальными координатами. Они являются линейными комбинациями исходных декартовых координат, изменяются по косинусоидальному (или синусоидальному) закону и описывают движение всех частиц системы с одной частотой и различной амплитудой. Нормальные координаты определяются преобразованием, обратным к рассмотренному:
.
Используя эти координаты, можно получить выражение для энергии колебаний кристалла, которое не будет содержать перекрестных членов, относящимся к разным точкам пространства:
.
Суммирование в этом выражении происходит по N значениям волнового вектора k и 3s ветвям j. Таким образом, полная энергия кристалла может быть представлена в виде суммы энергий независимых осцилляторов, характеризуемых волновым вектором k и частотой j(k). В отличие от выражения энергии в координатах смещений, данное выражение содержит сумму по аргументам, относящимся к одной точке пространства волновых векторов k (т.е. обратного пространства). Используя выражение для обобщенного импульса
,
полную энергию кристалла можно записать в виде :
.