- •ВВЕДЕНИЕ
- •§ 1. Матрицы и простейшие операции над ними
- •Операции над матрицами
- •§ 2. Определители, их основные свойства и методы вычисления
- •2.1 Определители второго порядка
- •Свойства определителей второго порядка
- •2.2 Определители третьего порядка
- •2.3 Понятие об определителях высших порядков
- •§ 3. Обратная матрица и ее вычисление
- •4.2 Метод Крамера
- •4.3 Метод Гаусса
- •§ 5. Векторы, линейные операции над векторами
- •Линейные операции над векторами
- •§ 6. Проекция вектора на ось. Теоремы о проекциях
- •§ 7. Линейная зависимость векторов. Базис
- •7.1 Базис на плоскости и в пространстве
- •7.2 Прямоугольный Декартов базис. Декартова система координат
- •7.3 Направляющие косинусы вектора
- •7.4 Радиус-вектор
- •7.5 Условие коллинеарности двух векторов
- •7.6 Простейшие задачи
- •§ 8. Скалярное произведение векторов
- •8.2 Косинус угла между векторами
- •§ 9. Векторное произведение векторов
- •§ 10. Смешанное произведение трех векторов
- •§ 2. Прямая на плоскости
- •2.1 Общее уравнение прямой и его исследование
- •2.4 Уравнение прямой, проходящей через две данные точки
- •2.6 Уравнение прямой в отрезках
- •2.7 Нормальное уравнение прямой
- •2.8 Расстояние от точки до прямой
- •§ 3. Плоскость
- •3.1 Общее уравнение плоскости
- •3.2 Неполные уравнения плоскости
- •3.3 Уравнения плоскости в отрезках
- •3.4 Нормальное уравнение плоскости
- •3.6 Расстояние от точки до плоскости
- •§ 4. Прямая в пространстве
- •4.1 Уравнение линии в пространстве
- •4.2 Векторное уравнение прямой. Параметрические уравнения прямой
- •4.3 Канонические уравнения прямой
- •4.4 Уравнения прямой, проходящей через две точки
- •4.6 Прямая и плоскость в пространстве
- •§ 5. Плоские кривые второго порядка
- •5.1 Окружность
- •5.2 Эллипс
- •5.3 Гипербола
- •5.4 Парабола
- •§ 6. Преобразование системы координат на плоскости
- •6.1 Параллельный перенос осей координат
- •6.2 Поворот осей координат на угол α
- •§ 7. Полярная система координат на плоскости
- •8.1 Сфера
- •8.2 Цилиндрические поверхности
- •8.3 Конические поверхности
- •8.4 Поверхность вращения
- •8.5 Эллипсоид
- •8.6 Гиперболоид
- •8.7 Параболоид
- •Глава III МАТЕМАТИЧЕСКИЙ АНАЛИЗ
- •§ 1. Логическая символика, множества и операции над ними
- •§ 2. Функции и их классификация
- •Элементарные функции
- •§ 3. Абсолютные величины и соотношения, связанные с ними
- •Свойства модуля действительного числа
- •§ 4. Последовательность. Характер изменения переменных величин
- •§ 5. Понятие о пределе переменной
- •§ 6. Окрестность точки
- •§ 7. Предел функции в точке
- •§ 8. Односторонние пределы функции в точке
- •§ 9. Свойства функций, имеющих предел
- •§ 10. Бесконечно малые и бесконечно большие функции
- •§ 11. Основные теоремы о пределах
- •§ 12. Предел дробно-рациональной функции
- •§ 13. Первый замечательный предел
- •§ 14. Второй замечательный предел
- •§ 15. Сравнение бесконечно малых функций
- •§ 16. Непрерывность функции
- •§ 17. Операции над непрерывными функциями
- •§ 18. Свойства функций, непрерывных на отрезке
- •§ 19. Производная функции одной переменной
- •19.2 Основные свойства производной
- •19.3 Производная сложной функции
- •19.4 Производная обратной функции
- •19.5 Производная функции, заданной параметрическими уравнениями
- •19.6 Геометрический смысл производной
- •19.7 Уравнения касательной и нормали к линии
- •19.8 Дифференцирование элементарных функций
- •19.9 Производная степенно-показательной функции
- •19.10 Дифференцирование неявной функции
- •19.11 Производные высших порядков
- •19.12 Правила Лопиталя
- •19.13 Основные теоремы для дифференцируемых функций
- •19.14 Необходимые и достаточные условия монотонности функции. Экстремумы функции
- •19.15 Наибольшее и наименьшее значения функции на отрезке
- •19.16 Выпуклость и вогнутость функции
- •19.17 Формула Тейлора
- •§ 20. Дифференциал функции одной переменной
- •20.1 Дифференциал и его геометрический смысл
- •20.2 Свойства дифференциала функции
- •20.3 Дифференциал сложной функции. Свойство инвариантности
- •20.4 Приближенное вычисление с помощью дифференциала
- •20.5 Дифференциалы высших порядков
- •§ 21. Функции многих переменных
- •21.1 Понятие функции нескольких переменных
- •21.2 Непрерывность функции двух переменных
- •21.3 Дифференцирование функции двух переменных
- •21.5 Полный дифференциал функции двух переменных
- •21.6 Приближенное вычисление с помощью полного дифференциала
- •21.7 Производные высших порядков функции двух переменных
- •21.9 Неявная функция. Дифференцирование неявной функции
- •21.10 Градиент функции многих переменных и его свойства
- •21.11 Экстремум функции нескольких переменных
- •ПРИЛОЖЕНИЕ
- •Список рекомендуемой литературы
КРАТКИЙ КУРС ЛЕКЦИЙ
ПО ВЫСШЕЙ МАТЕМАТИКЕ
Часть I.
Электронное учебное пособие по дисциплине “Математика” для студентов технических специальностей
В.А. Тимофеев, А.А. Тимофеев
Уфа 2008
Версия 1.03 от 20.12.2008
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ “УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ”
КРАТКИЙ КУРС ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ
Часть I
Уфа 2008
АВТОРЫ:
Тимофеев Вячеслав Алексеевич
доцент кафедры “ПМиМ”
Тимофеев Андрей Алексеевич
доцент кафедры “ПМиМ”
РЕЦЕНЗЕНТЫ:
Булгакова Гузель Талгатовна
профессор УГАТУ, доктор физ.-мат. наук
Хасанов Станислав Вильевич
доцент УГАТУ, кандидат физ.-мат. наук
Электронная верстка:
Тимофеев Андрей Алексеевич
доцент кафедры “ПМиМ”
3
ВВЕДЕНИЕ
Математика имеет исключительно важное значение для всего процесса обучения, необходима для успешного изучения общетеоретических и специальных дисциплин. Математические методы широко используются для решения самых разнообразных задач техники, строительства и экономики.
Электронный учебник содержит курс лекций по математике в соответствии с утвержденной программой по разделам: “Элементы линейной алгебры”, “Элементы векторной алгебры”, “Аналитическая геометрия на плоскости и в пространстве”, “Введение в математический анализ”, “Дифференциальное исчисление функций одной переменной”, “Дифференциальное исчисление функций нескольких переменных”, а также примеры решения задач по рассматриваемым темам. Материал рекомендуется изучать последовательно, однако, для повторения и закрепления изучаемого материала в процессе работы с учебником предусмотрена возможность перехода к любому изучаемому параграфу. Для этого необходимо нажать соответствующую ссылку на левой панели учебника.
При разработке электронного учебника были использованы курсы лекций, читаемые авторами в течение многих лет для студентов технических специальностей УГНТУ.