Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебник физики.doc
Скачиваний:
70
Добавлен:
06.11.2018
Размер:
15.62 Mб
Скачать

5.8. Примеры применения законов динамики при вращательном движении

1

Рис.5.17

. Рассмотрим некоторые примеры на закон сохранения момента импульса, которые можно осуществить с помощью скамьи Жуковского. В простейшем случае скамья Жуковского представляет собой платформу в форме диска (кресло), который может свободно вращаться вокруг вертикальной оси на шариковых подшипниках (рис.5.17). Демонстратор садится или становится на скамью, после чего ее приводят во вращательное движение. Вследствие того, что силы трения благодаря применению подшипников очень малы, момент импульса системы, состоящей из скамьи и демонстратора, относительно оси вращения не может меняться во времени, если система предоставлена самой себе. Если демонстратор держит в руках тяжелые гантели и разводит руки в стороны, то он увеличит момент инерции системы, а потому должна уменьшится угловая скорость вращения, чтобы остался неизменным момент импульса.

По закону сохранения момента импульса составим уравнение для данного случая

,

где - момент инерции человека и скамьи, и - момент инерции гантелей в первом и втором положениях, и - угловые скорости системы.

Угловая скорость вращения системы при разведении гантелей в сторону будет равна

.

Работу, совершенную человеком при перемещении гантелей, можно определить через изменение кинетической энергии системы

.

Рис. 5.18

2. Приведем еще один опыт со скамьей Жуковского. Демонстратор садится или становится на скамью и ему передают быстро вращающееся колесо с вертикально направленной осью (рис.5.18). Затем демонстратор поворачивает колесо на 1800. При этом изменение момента импульса колеса целиком передается скамье и демонстратору. В результате скамья вместе с демонстратором приходит во вращение с угловой скоростью, определяемой на основании закона сохранения момента импульса.

Момент импульса системы в начальном состоянии определяется только моментом импульса колеса и равен

,

где - момент инерции колеса, - угловая скорость его вращения.

После поворота колеса на угол 1800 момент импульса системы будет уже определяться суммой момента импульса скамьи с человеком и момента импульса колеса. С учетом того, что вектор момента импульса колеса изменил свое направление на противоположное, а его проекция на вертикальную ось стала отрицательной, получим

,

где - момент инерции системы «человек-платформа», - угловая скорость вращения скамьи с человеком.

По закону сохранения момента импульса

и .

В итоге, находим скорость вращения скамьи

.

3. Тонкий стержень массой m и длиной l вращается с угловой скоростью ω=10 с-1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Продолжая вращаться в той же плоскости, стержень перемещается так, что ось вращения теперь проходит через конец стержня. Найти угловую скорость во втором случае.

Решение

В данной задаче за счет того, что распределение массы стержня относительно оси вращения изменяется, момент инерции стержня также изменяется. В соответствии с законом сохранения момента импульса изолированной системы, имеем

.

Здесь - момент инерции стержня относительно оси, проходящей через середину стержня; - момент инерции стержня относительно оси, проходящей через его конец и найденный по теореме Штейнера.

Подставляя данные выражения в закон сохранения момента импульса, получим

,

откуда

.

4. Стержень длиной L=1,5 м и массой m1=10 кг подвешен шарнирно за верхний конец. В середину стержня ударяет пуля массой m2=10 г, летящая горизонтально со скоростью =500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?

Решение

Представим на рис. 5.19. систему взаимодействующих тел «стержень-пуля». Моменты внешних сил (сила тяжести, реакция оси) в момент удара равны нулю, поэтому можем воспользоваться законом сохранения момента импульса

.

М

Рис.5.19

омент импульса системы до удара равен моменту импульса пули относительно точки подвеса

.

Момент импульса системы после неупругого удара определится по формуле

,

где - момент инерции стержня относительно точки подвеса, - момент инерции пули, - угловая скорость стержня с пулей непосредственно после удара.

Решая после подстановки полученное уравнение, найдем

.

Воспользуемся теперь законом сохранения механической энергии. Приравняем кинетическую энергию стержня после попадания в него пули его потенциальной энергии в наивысшей точке подъема:

,

где - высота поднятия центра масс данной системы.

Проведя необходимые преобразования, получим

Угол отклонения стержня связан с величиной соотношением

.

Проведя вычисления, получим =0,1=180.

5. Определить ускорения тел и натяжения нити на машине Атвуда, предполагая, что (рис.5.20). Момент инерции блока относительно оси вращения равен I, радиус блока r. Массой нити пренебречь.

Решение

Р

Рис. 5.20

асставим все силы, действующие на грузы и блок, и составим для них уравнения динамики

Если нет проскальзывания нити по блоку, то линейное и угловое ускорение связаны между собой соотношением

Решая эти уравнения, получим

После чего находим T1 и T2 .

6

Рис.5.21

. К шкиву креста Обербека (рис.5.21) прикреплена нить, к которой подвешен груз массой M = 0,5 кг. Определить за какое время груз опускается с высоты h =1 м до нижнего положения. Радиус шкива r=3 см. На кресте укреплены четыре груза массой m=250 г каждый на расстоянии R = 30 см от его оси. Моментом инерции самого креста и шкива пренебречь по сравнению с моментом инерции грузов.

Решение

Составим уравнения динамики для данной системы:

Угловое ускорение шкива связано с ускорением груза соотношением , а момент инерции грузов креста Обербека равен .

Подставляя данные выражения и решая систему уравнений относительно ускорения, получим

Время опускания груза определяется из уравнения пути равноускоренного движения

.

Вычисления дают t=4,47с.

Рис.5.22

7. Для демонстрации законов сохранения применяется маятник Максвелла, представляющий собой массивный диск радиусом R и массой m , туго насаженный на ось радиусом r , которая подвешивается на двух предварительно намотанных на нее нитях (рис.5.22). Когда маятник отпускают, то он совершает возвратно-поступательное движение в вертикальной плоскости при одновременном вращении диска вокруг оси. Не учитывая силы сопротивления и момент инерции оси, определить ускорение поступательного движения маятника и силу натяжения нити.

Решение

Уравнения динамики для поступательного и вращательного движения маятника Максвелла имеют вид

В данной системе уравнений Т – сила натяжения одной нити, - момент инерции диска, а - угловое ускорение.

Решая уравнения, найдем: .

Натяжение нити определим из первого уравнения

.

8. Сплошной однородный диск радиуса R, вращающийся с угловой скоростью , кладут основанием на горизонтальную поверхность. Сколько оборотов сделает диск до остановки, если коэффициент трения между основанием диска и горизонтальной поверхностью равен μ.

Решение

С

Рис.5.23

ила трения приложена к каждому участку диска, и так как эти участки находятся на различных расстояниях от оси, то и моменты сил трения, приложенные к этим участкам, различны. Для нахождения результирующего момента применим метод дифференцирования. Разделим диск на узкие кольца. Одно такое кольцо радиусом r и шириной dr заштриховано на рис.5.23. Площадь такого кольца

,

а сила трения, действующая на выделенное кольцо,

,

где h – толщина диска, ρ – плотность материала диска.

Момент этой силы трения равен

.

Интегрируя по r от нуля до R, получаем суммарный момент сил трения

.

Работа, совершенная силами трения, определится по формуле

,

где - угол поворота диска, а N – число оборотов диска до полной остановки.

С другой стороны, работа сил трения равна убыли кинетической энергии диска, т.е.

,

где - момент инерции диска.

Приравнивая полученные выражения для работы, после преобразования найдем

.