Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Целая.doc
Скачиваний:
429
Добавлен:
08.03.2016
Размер:
33.9 Mб
Скачать

9.5.3. Минералы, руды и рудные концентраты

Известно около 20 минералов молибдена, из которых промышлен­ное значение имеют четыре: молибденит МоS2, повеллит СаМоO4, молибдит Fе3(МоO4)3∙J1/2 Н2O и вульфенит РbМоO4. За исключением молибденита, все они - вторичные минералы, образовавшиеся вслед­ствие выветривания первичного минерала - молибденита.

Молибденит MoS2 - самый распространенный и наиболее промышленно важный минерал молибдена. Это мягкий, свинцово-се­рого цвета минерал с металлическим блеском. Плотность его - 4100...4800 кг/м3. Минерал имеет гексагональную кристаллическую решет­ку слоистого типа. Слои ионов молибдена, расположенные между дву­мя слоями ионов серы, образуют трехслойные упаковки. При нагре­вании на воздухе до 500...600 °С минерал легко окисляется до МоO2.

Повеллит СаМо04 чаще встречается как вторичный минерал - продукт окисления молибденита, поэтому он покрывает его в виде тонких пленок. Цвет повеллита варьируется от белого до серого, плот­ность - 4350...4520 кг/м3.

Молибдит Fе(МоO4)3∙nН20, образующийся при выветривании молибденита, часто встречается вместе с последним в зоне окисле­ния месторождения молибденита. Состав молибдита непостоянен, поэтому его иногда выражают общей формулой Fе2O3∙МоO3∙2Н20. Может служить значительным источником получения молибдена.

Вульфенит РbМоO4 встречается в зонах окисления свинцовых месторождений. В зависимости от содержания примесей минерал может быть окрашен в желтый, ярко-красный, оливково-зеленый или сероватый цвета. Плотность минерала 6700...7000 кг/м3. В настоя­щее время промышленное значение этого минерала невелико.

Молибден принадлежит к малораспространенным элементам. Сред­нее содержание его в земной коре - 3∙10-4 % (по массе). Эксплуатируются руды, содержащие десятые и даже сотые доли процента молибдена.

Различают несколько типов молибденовых руд:

1. Простые кварцево-молибденовые, в которых молибденит за­легает в кварцевых жилах.

2. Кварцево-молибдено-вольфрамовые руды, содержащие наря­ду с молибденитом вольфрамит.

3. Скарные. В рудах этого типа молибденит часто с шилитом и некоторыми сульфидами (пирит, халькопирит) залегает в кварцевых жилах, заполняющих трещины в скарных (окремненных) известняках.

4. Медно-молибденовые, в которых молибденит сочетается с сульфидами меди и железа.

Наиболее значительные месторождения молибденовых руд сосредоточены в западной части США, Мексике, Чили, юго-вос­точной части Канады, южной Норвегии и восточных штатах Авст­ралии. В бывшем Советском Союзе эксплуатировался ряд место­рождений молибденовых руд, обеспечивающих потребность оте­чественной промышленности в молибдене: на Северном Кавказе и Закавказье, в Красноярском крае и других районах.

9.5.4. Способы переработки

МОЛИБДЕНОВЫХ КОНЦЕНТРАТОВ

Обогащают молибденсодержащие руды почти исключительно методами флотации. Молибденитовые концентраты подвергают окислительному отжигу, в результате которого получают огарок, состоящий из трехокиси молибдена, загрязненной рядом примесей. Огарок затем поступает на выплавку ферромолибдена или на получение чистых соединений молибдена, важнейшее из которых – трехокись молибдена. Обжиг молибденитовых концентратов проводят в многоподовых печах с механическим перегреванием в печах кипящего слоя.

Относительно низкая температура кипения трехокиси молибде­на (1 155 °С) послужила основой для разработки промышленной тех­нологии получения чистой трехокиси молибдена из молибденовых огарков возгонкой. Способ применяется на заводах США и Австра­лии. Его преимущества состоят в возможности получения чистой трехокиси молибдена по короткой технологической схеме.

Трехокись молибдена может быть восстановлена до металла водородом, углеродом и углеродсодержащими газами, а также алю­минием и кремнием, то есть металлотермическим методом.

Промышленный способ производства чистого порошкообразно­го молибдена, превращаемого затем в компактный металл, состоит в восстановлении трехокиси молибдена водородом. Компактный мо­либден получают способом порошковой металлургии и способом ду­говой и электроннолучевой плавки.

При получении сравнительно небольших заготовок (штабиков) сечением 2...16 см2 и длиной 450...600 мм порошки молибдена прессу­ют в стальных пресс-формах под давлением 2...3 т/см2 на гидравли­ческом прессе. Крупные молибденовые заготовки массой 100...120 кг. формуют методом гидростатического прессования. Для производства более крупных заготовок молибдена массой до 2 000 кг (для прокат­ки листов большого размера, труб и других изделий) применяют ва­куумную плавку молибдена в дуговых и электроннолучевых печах.

В результате электроннолучевой плавки молибден очищается от подавляющей части примесей, в частности от О, N, Fe, Са, Ni, Мп, Со.

Электроннолучевая плавка уменьшает содержание примесей кислорода, азота и углерода до пределов, близких к их растворимости в твердом молибдене, что устраняет выделение оксида, нитрида и карби­да на межкристаллитных границах и снижает порог перехода молибде­на из пластичного состояния в хрупкое до комнатной температуры.

Механические свойства молибдена зависят от чистоты металла и способа производства. Примеси кислорода, азота и углерода понижа­ют пластичность и разрушающее напряжение, но влияние элементов внедрения может быть частично нейтрализовано соответствующей термомеханической обработкой или легированием, или тем и другим од­новременно. Механические свойства молибдена приведены в табл. 47.

Таблица 47

Механические свойства молибдена при комнатной температуре

Вид заготовки

Состояние материала

Направление

Механические свойства

σв,

МПа

σs,

МПа

ε,

%

Пруток

16 мм

После

прокатывания

714

551

40

После отжига

для снятия напряжения

680

580

42

После

рекристаллизации

476

391

42

Лист

толщиной

2,1 мм

После отжига

для снятия напряжения

Продольное

639…733

558…635

20…27

Поперечное

640…742

578…670

16…24

После

рекристаллизации

Продольное

435…465

318…429

40…58

Поперечное

407…462

306…409

16…58

Обозначения: σв - прочность плавленого молибдена; σs - прочность спеченного молибдена; ε - относительное удлинение.

В последние время, в связи с освоением производства крупных слитков молибдена (1000 кг и более), расширяются возможности его применения. Его стали использовать в тех случаях, когда необ­ходимо сохранить прочность материала при высоких температурах, например при изготовлении лопаток турбин, газовых рулей и дру­гих деталей реактивных двигателей и ракет [46].