- •Введение
- •I. Гидравлические системы
- •1.1. Основные свойства и параметры капельной жидкости
- •Сила внутреннего трения в жидкости
- •1.2. Гидростатическое давление и его свойства
- •1.3. Основное уравнение гидростатики
- •Постоянная величина, обозначенная h, называется гидростатическим напором.
- •1.4. Сила давления жидкости на плоские и криволинейные поверхности
- •1.5. Основные понятия и уравнения гидродинамики
- •1.6. Поток жидкости и его основные характеристики
- •1.7. Геометрическое, энергетическое и физическое истолкование (интерпретация) уравнения Бернулли
- •1.9. Режимы движения жидкости и потери напора
- •Это число, называемое числом Рейнольдса, имеет вид
- •1.10. Истечение жидкости через малое отверстие в тонкой стенке
- •Введём параметр
- •В результате
- •1.11. Насадки, классификация и область применения
- •Контрольные вопросы:
- •2. Объёмный гидропривод
- •2.1. Общие сведения о гидроприводе
- •2.2. Насосы
- •2.2.1. Классификация насосов
- •2.2.2. Основные сведения о поршневых насосах
- •2.2.3. Средняя и мгновенная подача поршневого насоса
- •2.2.4. Давление в цилиндре поршневого насоса
- •2.2.5. Индикаторная диаграмма, параметры и характеристики
- •2.2.6. Конструкции поршневых насосов
- •2.2.7. Ротационные насосы
- •2.3. Гидроцилиндры
- •2.4. Устройства распределения и регулирования
- •2.4.1. Распределительная и направляющая аппаратура
- •2.4.2. Регулирующая аппаратура
- •2.4.3. Дроссели и регуляторы расхода
- •2.5. Регулирование скорости гидродвигателя
- •2.5.1. Дроссельное регулирование
- •2.5.2. Объёмное регулирование
- •2.6. Гидравлические аккумуляторы
- •2.7. Кондиционеры рабочей жидкости
- •2.8. Расчёт и выбор элементов гидропривода
- •2.8.1. Общие сведения о гидроприводе и порядке его расчета
- •2.8.2. Выбор рабочей жидкости
- •2.8.3. Определение рабочего давления
- •2.8.4. Расчёт основных параметров гидроцилиндров
- •2.8.5. Расчет гидроцилиндра на устойчивость
- •2.8.6. Выбор и расчёт параметров гидромотора
- •Здесь d – диаметр поршня (цилиндра), м; – ход поршня, м; Dб –диаметр окружности расположения поршней, м; – угол наклона упорного диска к оси блока цилиндров; z – число поршней.
- •2.8.7. Подбор трубопроводов
- •2.8.8. Определение расхода
- •2.8.9. Условный проход трубопроводов
- •2.8.10. Соединение трубопроводов
- •2.8.11. Выбор гидроаппаратуры
- •2.8.12. Определение потерь давления и объёмных потерь системе гидропривода
- •2. Определение объемных потерь в системе гидропривода
- •2.8.13. Выбор насоса
- •2.8.14. Расчёт параметров пневмогидроаккумулятора
- •О бъем газа
- •2.8.15. Определение кпд гидропривода
- •2.8.16. Тепловой расчет гидропривода
- •3. Центробежные насосы
- •3.1. Основные технические параметры насосов
- •3.2. Основы теории центробежных насосов
- •3.2.1. План скоростей
- •3.2.2. Основное уравнение лопастных насосов
- •3.2.3. Зависимость теоретического напора и коэффициента реакции рабочего колеса от угла установки лопасти
- •3.2.4. Потери в насосе и составляющие кпд
- •3.2.5. Подобие явлений в насосах
- •3.3. Расчет основных размеров центробежного насоса
- •3.3.1. Рабочее колесо
- •3.3.2. Всасывающие устройства насосов
- •3.3.3. Отводящие устройства насосов
- •3.4. Условия работы насосов в сеть
- •3.5. Регулирование работы насосов
- •3.6. Совместная работа насосов
- •3.7. Кавитация в насосах
- •3.7.1. Физические условия возникновения и развития кавитации
- •3.7.2. Кавитация в насосах и допустимая высота всасывания
- •3.7.3. Оценка кавитационных качеств насосов
- •3.8. Конструкции центробежных насосов
- •3.9. Вихревые насосы
- •3.10. Струйные насосы
- •Контрольные вопросы:
- •4. Гидродинамические передачи
- •4.1. Основные сведения о гидродинамических передачах
- •4 .2. Основные параметры
- •4.3. Гидромуфты
- •4.3.1. Регулирование гидромуфт
- •4.3.2. Согласование работы гидромуфты с дизельным двигателем
- •4.3.3. Гидродинамический тормоз
- •4.4. Гидротрансформаторы
- •4.4.1. Комплексная гидродинамическая передача
- •4.4.2. Согласование работы гидротрансформатора и двигателя внутреннего сгорания
- •Контрольные вопросы:
- •II. Пневматические системы
- •А весовой расход находим по формуле
- •9.1. Поршневые компрессоры
- •9.1.1. Классификация поршневых компрессоров
- •9.1.2. Элементы термодинамики процесса сжатия
- •9.1.3. Конструкции и номенклатура поршневых компрессоров
- •9.2. Винтовые компрессоры
- •9.2.1. Предварительный расчёт термодинамических параметров
- •Предварительный коэффициент подогрева газа
- •Внешние диаметры ведущего и ведомого винтов
- •Полученные значения округляют до ближайшего большего или меньшего по типоразмерному ряду диаметра в зависимости от величины предварительной скорости.
- •Уточнённая окружная скорость
- •9.2.2. Расчёт потребляемой мощности и выбор привода
- •Максимальный объём парной полости в начале сжатия
- •Геометрическая степень сжатия ступени компрессора
- •Заполненный объём парной полости
- •9.2.3. Характеристики и регулирование винтовых компрессоров
- •9.2.4. Конструкции и номенклатура винтовых компрессоров
- •9.3. Пластинчатые компрессоры
- •9.3.1. Принцип работы пластинчатого компрессора
- •9.3.2. Расчет пластинчатого компрессора
- •9.3.3. Индикаторные диаграммы и регулирование работы
- •9.3.4. Конструкции и номенклатура пластинчатых компрессоров
- •14.1. Приближенный расчёт пневмоцилиндра
- •14.2. Уточнённый расчёт пневмоцилиндра
- •14.3. Определение размеров и выбор элементов пневмомагистрали
- •Геометрическая площадь сечения трубопроводов пневмомагистрали
- •Общая длина эквивалентного трубопровода
- •Условный диаметр трубопровода
- •Уточнённая величина эффективной площади сечения пневмомагистрали
- •14.4. Расчёт времени срабатывания пневмопривода
- •14.4.1. Расчёт времени наполнения постоянного начального объёма рабочей полости пневмоцилиндра
- •14.4.2. Расчёт параметров разгона поршня пневмоцилиндра
- •14.4.3. Расчёт параметров разгона поршня пневмоцилиндра двустороннего действия
- •14.4.4. Расчёт времени установившегося движения поршня Скорость установившегося движения поршня
- •14.4.5. Расчёт времени наполнения конечного объёма рабочей
- •Полное время срабатывания пневмопривода
- •Контрольные вопросы:
- •III. Водоснабжение и воздухоснабжение транспортных предприятий
- •15.1. Наружные водопроводные сети
- •15.2. Расчёт магистральных водопроводных сетей
- •15.3. Внутренний водопровод
- •15.4. Расчёт внутреннего водопровода
- •15.5. Эксплуатация систем водоснабжения
- •Контрольные вопросы:
- •16.1. Классификация и устройство воздушных компрессорных станций
- •16.2. Эксплуатация компрессорных установок
- •16.3. Эксплуатация вспомогательного оборудования
- •16.4.Эксплуатация трубопроводов и арматуры
- •16.5. Техника безопасности и противопожарные мероприятия
- •Контрольные вопросы:
- •Контрольные вопросы:
- •Литература
- •Содержание
3.4. Условия работы насосов в сеть
Работа
насосной установки определяется как
самим насосом, так и сетью. Для
установившегося режима работы насосной
установки необходимо соблюдение
материального и энергетического
балансов, т. е. чтобы
и
.
Характеристикой сети называется зависимость потребного для работы напора от расхода. Потребный напор сети при данной подаче определяется разностью удельных энергий в конце (точка 2) и начале (точка 1) сети и величиной потерь энергии на преодоление гидравлических сопротивлений (рис. 80).
Из условий энергетического баланса и с учетом напора насоса найдем напор сети по формуле
.
(3.14)
Согласно уравнению Д. Бернулли
(3.15)
и
,
(3.16)
где
и
–
потери энергии на линии всасывания и
на линии нагнетания;
и
− скоростные напоры во всасывающем и
напорном
резервуарах.
Заменив
в (3.14) параметры
и
согласно
(3.15), (3.16) их значениями, получим
.
(3.17)
Здесь
– потенциальная часть удельной энергии
сети, не зависящая от расхода.
Из гидравлики известно, что гидравлическое сопротивление сети, так же как и разность скоростных напоров, пропорционально квадрату скоростей, а следовательно, и квадрату расходов, т. е.
.
Тогда напор сети
.
Графически
зависимость
от
Q
(рис. 81) выражается параболой с вершиной
в точке
и
.
Нанесем на этот график кривую H−Q
для насоса, получим в месте их пересечения
рабочую точку А, соответствующую
установившемуся режиму работы насоса.
Если изменять характеристику сети, то
точка А будет
перемещаться по кривой
H−Q.
Таким образом, при работе данного насоса
на сеть его подача и напор зависят от
характеристики сети.
3.5. Регулирование работы насосов
Установившийся режим работы насосной установки определяется равенством подачи и напора насоса расходу и сопротивлению сети.
Величину подачи и напора, соответствующую данному режиму находят по точке пересечения напорной характеристики насоса с характеристикой сети, называемой рабочей точкой. Для получения иного значения расхода в сети требуется изменить положение рабочей точки. Этого можно достичь, изменив или характеристики насоса, или характеристики сети.
Процесс изменения положения рабочей точки и называется регулированием работы насосной установки.
Изменение характеристики сети. Существуют различные способы изменения характеристики сети. К ним относятся: дросселирование, байпасирование и изменение статической составляющей напора.
Наиболее простым и широко используемым способом регулирования подачи является дросселирование, заключающиеся в искусственном изменении сопротивления сети путем открытия или закрытия задвижки, устанавливаемой в линии нагнетания.
При
дополнительном открытия задвижки
характеристика сети смещается вправо
и рабочая точка перемещается из положения
А2
в А1
(рис. 82, а). П
ри
этом подача возрастает на величину
,
а величина дросселируемого напора
уменьшается на
.
Аналитически регулирование задвижкой можно записать в следующем виде:
,
где
− коэффициент сопротивления задвижки,
зависящий от величины её открытия.
Таким
образом, постепенно открывая задвижку,
можно плавно регулировать расход сети
в диапазоне от
до
.
Дросселирование – мало экономичный способ регулирования, так как на задвижке теряется, превращается в тепло часть создаваемого насосом напора. Кроме того, при уменьшении подачи из-за несоответствия потока жид- кости размерам проточной части происходит интенсивный износ основных
деталей насоса, возникают недопустимые осевые усилия на ротор.
Регулирование
байпасированием предполагает перепуск
части жидкости из линии нагнетания в
линию всасывания насоса. Общую напорную
характеристику насосной установки
(рис. 82, б) получают, суммируя подачи
основного и дополнительного трубопроводов
при постоянных значениях напора.
Включение дополнительного трубопровода
обеспечивает уменьшение напора насоса
(от
до
)
и увеличение подачи (от
до
).
Это приведет к уменьшению расхода в
основной сети (от
до
).
При этом, через байпасную сеть, во входную
воронку колеса насоса поступает расход
–
.
Байпасирование целесообразно применять для насосов, имеющих кривую потребляемой мощности, снижающуюся при увеличении подачи, например осевых. В этом случае включение байпасной линии приведет к уменьшению расхода в основной сети и к переводу насоса на режим большей подачи и меньшей потребляемой мощности.
Изменение характеристики насоса. Наиболее распространенным способом изменения характеристики насоса являются: изменение скорости вращения рабочего колеса; поворот лопастей рабочего колеса (осевого насоса); изменение закрутки на входе в рабочее колесо.
Рабочая
характеристика насоса снимается при
постоянной скорости вращения рабочего
колеса
.
Для определения параметров насоса при
новой скорости вращения требуется
пересчитать характеристику насоса со
скорости
на новую скорость вращения
.
Такой пересчет производится по формулам
подобия, причем, поскольку диаметр не
меняется,
.
В результате
.
(3.18)
Соотношения
(3.18) показывают, что при изменении
скорости вращения каждая точка кривой
H−Q
перемещается по параболе (рис. 82, в).
Поскольку режим работы при этом
сохраняется, то КПД точек а
и
можно
считать одинаковыми.
Мощность
вычисляют по формуле
.
При таком способе регулирования отсутствуют непроизводительные потери в системе «насос – сеть», так как на всех режимах напор насоса соответствует сопротивлению сети; некоторые незначительные потери возникают только из-за отклонения режима работы насоса от оптимального. Однако, оценивая энергетические показатели регулирования насоса по скорости вращения, нужно учитывать и характеристику самого провода. Например, если для снижения скорости используется гидромуфта, потери в которой растут с увеличением скольжения, то это приводит к снижению фактической эффективности данного способа регулирования.
