- •Курс лекций по статике и кинематике
- •Раздел 1 Статика
- •Основные понятия и аксиомы статики
- •Аксиомы статики
- •5. Аксиома равенства действия и противодействия. Всякому действию соответствует равное и противоположно направленное противодействие.
- •2 Связи и их Реакции
- •3 СистемЫ сил
- •Лекция 2 система сходящихся сил
- •1 Проекции силы на ось и на плоскость
- •Равнодействующая сходящейся системы сил
- •3 Условия равновесия сходящейся системы сил Векторная форма
- •Аналитическая форма
- •Теорема о трех непараллельных силах
- •Лекция 3 теория пар сил
- •1 Момент силы относительно точки и оси
- •Момент силы относительно точки
- •Момент силы относительно оси
- •Аналитическое выражение моментов силы относительно координатных осей
- •2 Пара сил и ее свойства
- •3 Сложение пар сил и Условия равновесия пар сил
- •Условие равновесия
- •Условия равновесия пар
- •2 Приведение произвольной системы сил к заданному центру
- •3 Условия и уравнения равновесия произвольной системы сил Частные случаи приведения системы сил
- •Приведение системы сил к динаме (динамическому винту)
- •Теорема Вариньона о моменте равнодействующей
- •Уравнения равновесия произвольной пространственной системы сил
- •Равновесие пространственной системы параллельных сил
- •Равновесие произвольной плоской системы сил
- •Равновесие плоской системы параллельных сил
- •Лекция 5 фермы и составные конструкции
- •Классификация ферм
- •Способ вырезания узлов
- •3 Способ сечений (Риттера)
- •Определение реакций опор составных конструкций
- •Лекция 6 Трение
- •1 Трение покоя (сцепления)
- •Экспериментально установлено, что
- •2 Трение качения
- •3 Устойчивость при опрокидывании
- •Лекция 7 центр тяжести
- •1. Центр параллельных сил
- •2 Центр тяжести твердого тела
- •3 Методы определения центров тяжести
- •4 Центры тяжести простейших тел
- •5 Статические моменты и центр тяжести
- •6 Вспомогательные теоремы для определения положения центра тяжести
- •Раздел 2 Кинематика Лекция 8 кинематика точки
- •1 Предмет и задачи кинематики
- •2 Способы задания движения точки Векторный способ задания движения точки
- •Естественный способ задания движения точки
- •3 Скорость и ускорение точки при векторном спосоБе задания движения точки Определение скорости точки
- •Определение ускорения точки
- •4 Скорость и ускорение точки при координатном способе задания движения Определение скорости точки
- •Определение ускорения точки
- •2 Скорость и ускорение точки Скорость точки
- •Ускорение точки
- •4 Классификация движений точки
- •Равномерное и равнопеременное движение точки Равномерное движение точки
- •Равнопеременное движение точки
- •Лекция 10 простейшие движения твердого тела
- •1 Поступательное движение твердого тела
- •2 Вращательное движение твердого тела
- •3 Скорость и ускорение точек, вращающегося тела
- •4 Передаточные механизмы
- •Лекция 11 плоское движение твердого тела
- •Уравнения плоского движения твердого тела
- •2 Скорости точек тела при его плоском движении
- •3 Ускорение точек тела при его плоском движении
- •На этом основании
- •Лекция 12 мгновенный центр скоростей и ускорений
- •1 Мгновенный центр скоростей
- •2 Частные случаи определения мгновенного центра скоростей
- •3 Мгновенный центр ускорений
- •Угловая скорость вращения колеса
- •Действительно, имеем
- •2 Скорость точки при сложном движении
- •Таким образом
- •3 Ускорение точки при сложном движении
- •4 Ускорение кориолисово
- •Для тел, движущихся по поверхности Земли, ее вращение вокруг оси является переносным движением.
На этом основании
В этом заключается первое следствие теоремы об ускорениях точек плоской фигуры.
Проекции ускорений на ось, направленную из полюса, могут иметь знаки плюс и минус.
Из следствия вытекает, что алгебраическая величина проекции меньше , а абсолютное значение может и превышать при большом центростремительном ускорении . Проекции ускорений точки А и полюса О на ось х равны в том случае, если т. е. при
Проведем через конец ускорения полюса , отложенного в точке А, прямую, перпендикулярную оси х. Эта прямая представляет собой годограф возможных ускорений точки плоской фигуры при т. е. при , и является границей, за которую не могут выходить концы возможных ускорений точки А. Действительно, если то конец ускорения обязательно находится на этой прямой, а если , то конец ускорения находится с той стороны этой прямой, где расположен полюс.
Следствие 2. Концы ускорений точек неизменяемого отрезка лежат на одной прямой и делят эту прямую на части, пропорциональные расстояниям между этими точками.
Зная ускорение точки А отрезка АВ, алгебраические величины угловой скорости и углового ускорения , определим ускорение точки В отрезка, приняв точку А за полюс:
.
Рис. 11.11
Построим в точке В ускорение полюса (рис. 11.11). Положим, что отрезок вращается ускоренно в направлении, обратном направлению вращения часовой стрелки. Из конца ускорения отложим ускорение под углом к отрезку A1b, равному и параллельному отрезку АВ. Соединив точку В с концом , получаем ускорение точки В.
Для определения ускорения какой-либо другой точки отрезка, например точки D, выполним аналогичное построение.
Очевидно, что ускорение составляет с отрезком А1b тот же угол β.
Ускорения точек В и D отрезка в его вращательном движении вокруг полюса А пропорциональны расстояниям от этих точек до полюса. Действительно,
Поэтому dD1/bB1= AD/AB, но AD=A1d и АВ=А1b, как противоположные стороны параллелограммов. Тогда
.
Таким образом, . Из подобия треугольников следует, что:
Концы ускорений - точки a1, d1 и В1 - лежат на oдной прямой;
Рис. 11.12
Последнее соотношение показывает, что концы ускорений точек неизменяемого отрезка делят прямую, соединяющую эти концы, на части, пропорциональные расстояниям между соответствующими точками.
Поэтому, зная ускорения и концов отрезка АВ, можно определить графически ускорения любой точки этого отрезка.
Допустим, что требуется определить ускорение точек D, С и Е, делящих отрезок на четыре равные части (рис. 11.12). Соединяем концы ускорений точек А и В, отложенных в масштабе, отрезком прямой А1В1 и делим этот отрезок точками D1, C1 и E1 на четыре равные части. Соединяя точки D и D1, С и C1, E и E1, получаем ускорения этих точек , и . Пользуясь масштабом, находим их модули и по чертежу определяем их направления.