
- •Features
- •Pin Configurations
- •Disclaimer
- •Overview
- •Block Diagram
- •Pin Descriptions
- •Port A (PA7..PA0)
- •Port B (PB7..PB0)
- •Port C (PC7..PC0)
- •Port D (PD7..PD0)
- •RESET
- •XTAL1
- •XTAL2
- •AVCC
- •AREF
- •AVR CPU Core
- •Introduction
- •Architectural Overview
- •Status Register
- •Stack Pointer
- •Interrupt Response Time
- •SRAM Data Memory
- •Data Memory Access Times
- •EEPROM Data Memory
- •EEPROM Read/Write Access
- •I/O Memory
- •Clock Systems and their Distribution
- •CPU Clock – clkCPU
- •I/O Clock – clkI/O
- •Flash Clock – clkFLASH
- •ADC Clock – clkADC
- •Clock Sources
- •Default Clock Source
- •Crystal Oscillator
- •External RC Oscillator
- •External Clock
- •Timer/Counter Oscillator
- •Idle Mode
- •Power-down Mode
- •Power-save Mode
- •Standby Mode
- •Extended Standby Mode
- •Analog to Digital Converter
- •Analog Comparator
- •Brown-out Detector
- •Internal Voltage Reference
- •Watchdog Timer
- •Port Pins
- •Resetting the AVR
- •Reset Sources
- •Power-on Reset
- •External Reset
- •Brown-out Detection
- •Watchdog Reset
- •Watchdog Timer
- •Interrupts
- •I/O Ports
- •Introduction
- •Configuring the Pin
- •Reading the Pin Value
- •Unconnected pins
- •Alternate Port Functions
- •Alternate Functions of Port A
- •Alternate Functions of Port B
- •Alternate Functions of Port C
- •Alternate Functions of Port D
- •Port A Data Register – PORTA
- •Port B Data Register – PORTB
- •Port C Data Register – PORTC
- •Port D Data Register – PORTD
- •External Interrupts
- •8-bit Timer/Counter0 with PWM
- •Overview
- •Registers
- •Definitions
- •Counter Unit
- •Output Compare Unit
- •Force Output Compare
- •Modes of Operation
- •Normal Mode
- •Fast PWM Mode
- •Phase Correct PWM Mode
- •Internal Clock Source
- •Prescaler Reset
- •External Clock Source
- •16-bit Timer/Counter1
- •Overview
- •Registers
- •Definitions
- •Compatibility
- •Counter Unit
- •Input Capture Unit
- •Input Capture Trigger Source
- •Noise Canceler
- •Using the Input Capture Unit
- •Output Compare Units
- •Force Output Compare
- •Modes of Operation
- •Normal Mode
- •Fast PWM Mode
- •Phase Correct PWM Mode
- •8-bit Timer/Counter2 with PWM and Asynchronous Operation
- •Overview
- •Registers
- •Definitions
- •Counter Unit
- •Output Compare Unit
- •Force Output Compare
- •Modes of Operation
- •Normal Mode
- •Fast PWM Mode
- •Phase Correct PWM Mode
- •Timer/Counter Prescaler
- •SS Pin Functionality
- •Slave Mode
- •Master Mode
- •SPI Control Register – SPCR
- •SPI Status Register – SPSR
- •SPI Data Register – SPDR
- •Data Modes
- •USART
- •Overview
- •AVR USART vs. AVR UART – Compatibility
- •Clock Generation
- •External Clock
- •Synchronous Clock Operation
- •Frame Formats
- •Parity Bit Calculation
- •USART Initialization
- •Parity Generator
- •Disabling the Transmitter
- •Receiver Error Flags
- •Parity Checker
- •Disabling the Receiver
- •Flushing the Receive Buffer
- •Asynchronous Data Recovery
- •Using MPCM
- •Write Access
- •Read Access
- •Two-wire Serial Interface
- •Features
- •TWI Terminology
- •Electrical Interconnection
- •Transferring Bits
- •START and STOP Conditions
- •Address Packet Format
- •Data Packet Format
- •Overview of the TWI Module
- •SCL and SDA Pins
- •Bit Rate Generator Unit
- •Bus Interface Unit
- •Address Match Unit
- •Control Unit
- •TWI Register Description
- •TWI Bit Rate Register – TWBR
- •TWI Control Register – TWCR
- •TWI Status Register – TWSR
- •TWI Data Register – TWDR
- •Using the TWI
- •Transmission Modes
- •Master Transmitter Mode
- •Master Receiver Mode
- •Slave Receiver Mode
- •Slave Transmitter Mode
- •Miscellaneous States
- •Analog Comparator
- •Analog Comparator Multiplexed Input
- •Features
- •Operation
- •Starting a Conversion
- •Differential Gain Channels
- •Changing Channel or Reference Selection
- •ADC Input Channels
- •ADC Voltage Reference
- •ADC Noise Canceler
- •Analog Input Circuitry
- •ADC Accuracy Definitions
- •ADC Conversion Result
- •ADLAR = 0
- •ADLAR = 1
- •Features
- •Overview
- •Test Access Port – TAP
- •TAP Controller
- •PRIVATE0; $8
- •PRIVATE1; $9
- •PRIVATE2; $A
- •PRIVATE3; $B
- •Bibliography
- •Features
- •System Overview
- •Data Registers
- •Bypass Register
- •Device Identification Register
- •Reset Register
- •Boundary-scan Chain
- •EXTEST; $0
- •IDCODE; $1
- •SAMPLE_PRELOAD; $2
- •AVR_RESET; $C
- •BYPASS; $F
- •Scanning the Digital Port Pins
- •Scanning the RESET Pin
- •Scanning the Clock Pins
- •Scanning the ADC
- •Features
- •Application Section
- •BLS – Boot Loader Section
- •Read-While-Write and no Read-While-Write Flash Sections
- •Boot Loader Lock Bits
- •Performing a Page Write
- •Using the SPM Interrupt
- •Setting the Boot Loader Lock Bits by SPM
- •Reading the Fuse and Lock Bits from Software
- •Preventing Flash Corruption
- •Fuse Bits
- •Latching of Fuses
- •Signature Bytes
- •Calibration Byte
- •Signal Names
- •Parallel Programming
- •Enter Programming Mode
- •Chip Erase
- •Programming the Flash
- •Programming the EEPROM
- •Reading the Flash
- •Reading the EEPROM
- •Programming the Lock Bits
- •Reading the Signature Bytes
- •Reading the Calibration Byte
- •SPI Serial Downloading
- •Data Polling Flash
- •Data Polling EEPROM
- •AVR_RESET ($C)
- •PROG_ENABLE ($4)
- •PROG_COMMANDS ($5)
- •PROG_PAGELOAD ($6)
- •PROG_PAGEREAD ($7)
- •Data Registers
- •Reset Register
- •Programming Enable Register
- •Virtual Flash Page Read Register
- •Programming Algorithm
- •Entering Programming Mode
- •Leaving Programming Mode
- •Performing Chip Erase
- •Programming the Flash
- •Reading the Flash
- •Programming the EEPROM
- •Reading the EEPROM
- •Programming the Fuses
- •Programming the Lock Bits
- •Reading the Signature Bytes
- •Reading the Calibration Byte
- •Electrical Characteristics
- •Absolute Maximum Ratings*
- •DC Characteristics
- •External Clock Drive Waveforms
- •External Clock Drive
- •Two-wire Serial Interface Characteristics
- •ADC Characteristics
- •Register Summary
- •Instruction Set Summary
- •Ordering Information
- •Packaging Information
- •Errata
- •ATmega32 Rev. A
- •Datasheet Change Log for ATmega32
- •Changes from Rev. 2503E-09/03 to Rev. 2503F-12/03
- •Changes from Rev. 2503D-02/03 to Rev. 2503E-09/03
- •Changes from Rev. 2503C-10/02 to Rev. 2503D-02/03
- •Changes from Rev. 2503B-10/02 to Rev. 2503C-10/02
- •Changes from Rev. 2503A-03/02 to Rev. 2503B-10/02
- •Table of Contents

|
|
|
ATmega32(L) |
|
|
|
|
|
Internal Voltage |
|
|
|
ATmega32 features an internal bandgap reference. This reference is used for Brown- |
||
|
|||
|
Reference |
out Detection, and it can be used as an input to the Analog Comparator or the ADC. The |
|
|
|
2.56V reference to the ADC is generated from the internal bandgap reference. |
Voltage Reference Enable The voltage reference has a start-up time that may influence the way it should be used. Signals and Start-up Time The start-up time is given in Table 16. To save power, the reference is not always turned on. The reference is on during the following situations:
1.When the BOD is enabled (by programming the BODEN Fuse).
2.When the bandgap reference is connected to the Analog Comparator (by setting the ACBG bit in ACSR).
3.When the ADC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow the reference to start up before the output from the Analog Comparator or ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off before entering Power-down mode.
Table 16. Internal Voltage Reference Characteristics
Symbol |
Parameter |
Min |
Typ |
Max |
Units |
|
|
|
|
|
|
VBG |
Bandgap reference voltage |
1.15 |
1.23 |
1.35 |
V |
tBG |
Bandgap reference start-up time |
|
40 |
70 |
µs |
IBG |
Bandgap reference current consumption |
|
10 |
|
µA |
Watchdog Timer |
The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 |
|||||||||||
|
MHz. This is the typical value at VCC = 5V. See characterization data for typical values at |
|||||||||||
|
other VCC levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset |
|||||||||||
|
interval can be adjusted as shown in Table 17 on page 40. The WDR – Watchdog Reset |
|||||||||||
|
– instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is |
|||||||||||
|
disabled and when a Chip Reset occurs. Eight different clock cycle periods can be |
|||||||||||
|
selected to determine the reset period. If the reset period expires without another |
|||||||||||
|
Watchdog Reset, the ATmega32 resets and executes from the Reset Vector. For timing |
|||||||||||
|
details on the Watchdog Reset, refer to page 38. |
|||||||||||
|
To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be |
|||||||||||
|
followed when the Watchdog is disabled. Refer to the description of the Watchdog Timer |
|||||||||||
|
Control Register for details. |
|||||||||||
|
Figure 21. Watchdog Timer |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WATCHDOG |
|
|
|
|
|
|
|
|
|||
|
OSCILLATOR |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39
2503F–AVR–12/03

Watchdog Timer Control
Register – WDTCR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bit |
7 |
6 |
|
5 |
|
4 |
3 |
2 |
1 |
0 |
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
WDTCR |
|
– |
– |
|
|
|
– |
|
WDTOE |
WDE |
WDP2 |
WDP1 |
WDP0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Read/Write |
R |
R |
|
|
R |
R/W |
R/W |
R/W |
R/W |
R/W |
|
||
Initial Value |
0 |
0 |
|
0 |
|
0 |
0 |
0 |
0 |
0 |
|
• Bits 7..5 – Res: Reserved Bits
These bits are reserved bits in the ATmega32 and will always read as zero.
• Bit 4 – WDTOE: Watchdog Turn-off Enable
This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the description of the WDE bit for a Watchdog disable procedure.
• Bit 3 – WDE: Watchdog Enable
When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE bit has logic level one. To disable an enabled Watchdog Timer, the following procedure must be followed:
1.In the same operation, write a logic one to WDTOE and WDE. A logic one must be written to WDE even though it is set to one before the disable operation starts.
2.Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.
• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0
The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is enabled. The different prescaling values and their corresponding Timeout Periods are shown in Table 17.
Table 17. Watchdog Timer Prescale Select
|
|
|
Number of WDT |
Typical Time-out |
Typical Time-out |
|
WDP2 |
WDP1 |
WDP0 |
Oscillator Cycles |
at VCC = 3.0V |
at VCC = 5.0V |
|
0 |
0 |
0 |
16K |
(16,384) |
17.1 ms |
16.3 ms |
|
|
|
|
|
|
|
0 |
0 |
1 |
32K |
(32,768) |
34.3 ms |
32.5 ms |
|
|
|
|
|
|
|
0 |
1 |
0 |
64K |
(65,536) |
68.5 ms |
65 ms |
|
|
|
|
|
|
|
0 |
1 |
1 |
128K |
(131,072) |
0.14 s |
0.13 s |
|
|
|
|
|
|
|
1 |
0 |
0 |
256K |
(262,144) |
0.27 s |
0.26 s |
|
|
|
|
|
|
|
1 |
0 |
1 |
512K |
(524,288) |
0.55 s |
0.52 s |
|
|
|
|
|
|
|
1 |
1 |
0 |
1,024K |
(1,048,576) |
1.1 s |
1.0 s |
|
|
|
|
|
|
|
1 |
1 |
1 |
2,048K |
(2,097,152) |
2.2 s |
2.1 s |
|
|
|
|
|
|
|
40 ATmega32(L)
2503F–AVR–12/03

ATmega32(L)
The following code example shows one assembly and one C function for turning off the WDT. The example assumes that interrupts are controlled (for example by disabling interrupts globally) so that no interrupts will occur during execution of these functions.
Assembly Code Example
WDT_off:
; Write logical one to WDTOE and WDE ldi r16, (1<<WDTOE)|(1<<WDE)
out WDTCR, r16
; Turn off WDT ldi r16, (0<<WDE) out WDTCR, r16 ret
C Code Example
void WDT_off(void)
{
/* Write logical one to WDTOE and WDE */ WDTCR = (1<<WDTOE) | (1<<WDE);
/* Turn off WDT */ WDTCR = 0x00;
}
41
2503F–AVR–12/03