Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
M_A_FAT_HOV.doc
Скачиваний:
44
Добавлен:
08.12.2018
Размер:
3.38 Mб
Скачать

9. Момент инерции твердого тела

Из формулы (7.24) видно, что угловое ускорение, сообщаемое телу вращающим моментом, зависит от момента инерции тела; чем больше момент инерции, тем меньше угловое ускорение. Следовательно, момент инерции характеризует инерционные свойства тела при вращательном движении, как и масса при поступательном движении. В отличие от массы тела момент инерции зависит от радиуса окружности, описываемой точкой приложения силы, а, следовательно, от выбора оси вращения.

Из формулы следует, что единицей измерения момента инерции является кг.мІ.

Из определения момента инерции

(7.25)

видно, что момент инерции есть величина аддитивная. Это означает, что момент инерции тела равен сумме моментов инерции его частей:

(7.26)

Момент инерции существует безотносительно к вращению. Каждое тело независимо от того, вращается оно или покоится, обладает определенным моментом инерции относительно любой оси.

Для неоднородных тел и тел неправильной формы момент инерции определяют экспериментально, а для однородных тел геометрически правильной формы – посредством интегрирования.

Как было ранее указано, в силу формулы (7.3) элементарная масса равна произведению плотности тела в данной точке на соответствующий элементарный объем: .

Следовательно, момент инерции можно представить в виде: .

Если плотность тела постоянна, её можно вынести за знак суммы задача нахождения моментов инерции сводится к интегрированию:

(7.27)

Интегралы в (7.27) берутся по всему объему тела. Величины  и r в этих интегралах являются функциями точки.

В качестве примера вычислим момент инерции однородного диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр (рис. 7.10).

Рис. 7.10.

Разобьем диск на кольцевые слои толщиной . Все точки одного слоя будут находиться на одинаковом расстоянии от оси, равном . Объем такого слоя равен , где – толщина диска. Поскольку диск однороден, плотность его во всех точках одинакова, (7.27) можем вынести за знак интеграла: , где – радиус диска.

Так как масса диска , то получим

(7.28)

Для однородных и симметричных тел обычно основной осью вращения является ось симметрии. В этом случае момент инерции, как мы видели, легко вычисляется.

Для некоторых тел правильной формы значение моментов инерции относительно осей, проходящих через центр их симметрии приведены в таблице 2.

Таблица 2

Форма тела

Расположение оси

Величина момента инерции

Обруч

Цилиндр

Шар

Примечание: m – масса тела, R0 – его радиус

10. Теорема Штейнера

Рассмотрим произвольное тело и две параллельные друг другу оси, одна из которых (ось С) проходит через центр масс тела, а другая (ось О) отстоит от первой на расстояние а (рис. 7.11). Выберем оси координат и так, как показано на рис. 7.11.

Рис. 7.11

Момент инерции относительно оси О определяется выражением

Разобьем это выражение на три суммы:

Первая сумма представляет собой момент инерции относительно оси, проходящей через центр масс. Сумма дает массу тела . Наконец, , где – координата центра масс, которая при сделанном выборе начала координат равна нулю. Таким образом, мы приходим к соотношению:

(7.29)

Это соотношение выражает теорему Штейнера, которая гласит, что момент инерции относительно произвольной оси равен сумме момента инерции относительно оси, параллельной данной и проходящей через центр масс тела, и произведением массы т тела на квадрат расстояния а между осями.

В соответствии с теоремой Штейнера момент инерции диска относительно оси ОґОґ, отстоящей на расстоянии от оси, проходящей через центр масс, равен найденному нами моменту инерции (7.28) относительно оси, проходящей через центр диска, плюс : .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]