Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
M_A_FAT_HOV.doc
Скачиваний:
44
Добавлен:
08.12.2018
Размер:
3.38 Mб
Скачать

5. Плоское движение твердого тела

Плоским называется такое движение, при котором все точки тела движутся в параллельных плоскостях. Произвольное плоское движение можно представить как совокупность поступательного движения и вращения. Разбиение движения на поступательное и вращательное можно осуществить множеством способов (рис. 7.7).

Рис.7.7 а

Рис.7.7 б

Рис.7.7 в

В качестве примера рассмотрим качение цилиндра радиуса без скольжения по плоскости. Скорости точек цилиндра можно представить как обусловленные: а – одним лишь вращением вокруг оси А с угловой скоростью (рис.7.7 а); б – поступательным движением со скоростью и вращением вокруг оси С с угловой скоростью (рис.7.7 б); в – поступательным движением со скоростью и вращением вокруг оси В с угловой скоростью (рис.7.7 в). Из приведенных на рисунке соотношений легко получить, что . Следовательно, рассмотренные в этом примере способы отличаются значениями скорости поступательного движения, но соответствуют одной и той же угловой скорости . Поэтому можно говорить об угловой скорости вращения твердого тела, не указывая, через какую точку проходит ось вращения.

Возьмем скорость поступательного движения равной . Примем одну из точек, лежащих на оси вращения, за начало координат О. Обозначим через – радиус-вектор, проведенный из точки О в данную точку тела. Согласно формуле (7.11), составляющую скорости точек, обусловленную вращением, можно представить в виде .

Следовательно, для скорости точек тела относительно неподвижной системы отсчета получается формула

(7.13)

т им-

31.1)

ение 1-я

Особенно удобным оказывается разбиение произвольного плоского движения на поступательное, происходящее со скоростью центра масс , и вращение вокруг оси, проходящей через этот центр (рис. 7.7 б).

Элементарное перемещение твердого тела при плоском движении всегда можно представить как поворот вокруг так называемой мгновенной оси вращения (рис. 7.7 а). Эта ось может находиться внутри либо вне тела. Положение мгновенной оси относительно неподвижной системы отсчета и относительно тела, вообще говоря, изменяется со временем. В случае, изображенном на рис. 7.7 а-в, мгновенная ось совпадает с линией касания цилиндра с плоскостью (ось А). Эта ось перемещается как по плоскости (т.е. относительно системы отсчета), так и по поверхности цилиндра. Таким образом, плоское движение можно рассматривать как ряд последовательных элементарных вращений вокруг мгновенных осей.

6. Момент силы относительно оси

Как показывает опыт, результат действия силы при вращательном движении зависит от величины силы, от расстояния между осью (или точкой), вокруг которой вращается тело, и точкой приложения силы, а также от направления силы. Действительно, каждый по своему опыту знает, что, закрывая дверь, следует нажимать на неё подальше от оси её вращения. Кроме того, известно, что нельзя закрыть дверь, действуя на неё силой, направленной вверх вдоль оси двери, или силой, перпендикулярной оси в плоскости двери. Дверь закрывают, нажимая на неё перпендикулярно её плоскости. Когда сила приложена к одной из точек твердого тела, вектор момента силы характеризует способность силы вращать тело вокруг точки О, относительно которой он берется. Поэтому момент силы называют также вращающим моментом.

Рассмотрим момент силы относительно оси. Проекция вектора на произвольную ось, проходящую через точку О, называется моментом силы относительно этой оси:

(7.14)

Пусть твердое тело произвольной формы вращается под действием силы вокруг некоторой неподвижной оси ОО (рис. 7.8). Тогда все ее точки описывают окружности с центрами на этой оси. В качестве оси может быть взята реальная ось, вокруг которой вращается тело. Но это может быть одна из осей координат и вообще любая воображаемая прямая. Разложим действующую силу на три взаимно перпендикулярные составляющие: (параллельную оси), (перпендикулярную оси и лежащую на линии, проходящей через ось) и (перпендикулярную и ). Очевидно, что вращение вызывает только составляющая , являющаяся касательной к окружности, описываемой точкой приложения силы. Эта сила называется вращающей силой. Остальные две силы вращения не вызывают. Воспользовавшись определением момента силы относительно точки, представим момент силы относительно точки О в виде , где – момент силы и т.д.

Рис. 7.8

Проекция на ось z вектора равна сумме проекций моментов составляющих сил. Моменты перпендикулярны к оси z , поэтому их проекции равны нулю. Следовательно,

(7.15)

Таким образом, моментом силы относительно оси (или моментом вращающей силы) будем называть произведение вращающей силы на радиус окружности, описываемой точкой приложения силы.

В общем случае момент силы формально определяется по той же формуле (6.29). Поэтому момент силы относительно оси представляет собой вектор, направленный перпендикулярно плоскости окружности, т.е. вдоль оси по правилу буравчика.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]