- •Введение
- •Кинематика материальной точки
- •1.1. Описание положения материальной точки в пространстве
- •1.2. Скорость
- •1.3. Ускорение
- •1.4. Путь при криволинейном движении
- •1.5. Частные случаи кинематики материальной точки
- •1.6. Примеры решения задач
- •Основные положения
- •4. Тангенциальное и нормальное составляющие ускорения.
- •5. Кинематические уравнения равноускоренного движения:
- •Контрольные вопросы
- •2. Кинематика абсолютно твердого тела
- •2.1. Поступательное и вращательное движение абсолютно твердого тела
- •2 Рис.2.3 .2. Кинематика вращательного движения
- •2.3. Плоское движение твердого тела
- •2.4. Примеры решения задач на кинематику вращательного движения
- •Основные положения
- •4. Кинематические уравнения равноускоренного вращательного движения:
- •5. Связь линейных и угловых величин:
- •6. Аналогия между кинематикой поступательного и вращательного движения
- •Контрольные вопросы
- •3. Динамика материальной точки и поступательного движения твердого тела
- •3.1. Инерциальные системы отсчета. Законы Ньютона
- •3.2. Центр масс механической системы и закон его движения
- •3.3. Закон сохранения импульса. Система центра масс
- •3.4. Движения тела переменной массы. Формула Циолковского
- •3.5. Применение законов динамики
- •Основные положения
- •2. Динамические характеристики тела при поступательном движении:
- •3. Основной закон динамики:
- •4. Радиус-вектор и скорость центра масс
- •7. Уравнение движения тела переменной массы:
- •Контрольные вопросы
- •4. Механическая работа и энергия
- •4.1. Работа переменной силы. Мощность
- •4.2. Кинетическая энергия. Теорема о кинетической энергии
- •4.3. Консервативные силы. Потенциальная энергия
- •4.5. Связь силы и потенциальной энергии
- •4.6. Закон сохранения механической энергии
- •4.7. Упругие и неупругие соударения
- •4.8. Потенциальные кривые. Условия равновесия механической системы
- •4.9. Примеры решения задач
- •Основные положения
- •6. Консервативные и диссипативные силы.
- •Контрольные вопросы
- •5. Динамика вращательного движения твердого тела
- •5.1. Момент силы и момент импульса относительно точки
- •5.2. Уравнение моментов. Закон сохранения момента импульса
- •5.3. Момент силы и момент импульса относительно неподвижной оси
- •5.4. Основное уравнение динамики для твердого тела, вращающегося вокруг неподвижной оси
- •5.5. Вычисление моментов инерции. Теорема Штейнера
- •5.6. Кинетическая энергия и работа при вращательном движении
- •5.7. Гироскоп
- •5.8. Примеры применения законов динамики при вращательном движении
- •Основные положения
- •4. Моменты инерции простейших тел относительно оси проходящей через центр масс
- •Контрольные вопросы
- •6. Неинерциальные системы отсчета. Силы инерции
- •6.1. Силы инерции при ускоренном поступательном движении системы отсчета
- •6.2. Силы инерции во вращающейся системе отсчета
- •6.3. Примеры решения задач
- •Основные положения
- •Контрольные вопросы
- •7. Механика упругих тел
- •7.1. Одноосное растяжение и сжатие
- •7.2. Сдвиг
- •7.3. Кручение
- •7.4. Примеры решения задач
- •Основные положения
- •4. Объемная плотность энергии упруго деформированного тела:
- •Контрольные вопросы
- •8. Механика жидкостей и газов
- •8.1. Идеальная жидкость. Уравнение неразрывности. Уравнение Бернулли
- •8.2 . Вязкость. Ламинарный и турбулентный режимы течения жидкостей
- •8.3. Примеры решения задач
- •Основные положения
- •4. Сила внутреннего трения:
- •Контрольные вопросы
- •9. Основы релятивистской механики
- •9.1. Преобразования координат и принцип относительности Галилея
- •9.2. Постулаты специальной теории относительности
- •9.3. Преобразования Лоренца. Следствия из преобразований Лоренца
- •9.4. Парадоксы теории относительности
- •9.5. Импульс и энергия в релятивистской механике
- •9.6. Понятие об общей теории относительности
- •9.7. Примеры решения задач
- •Основные положения
- •Постулаты Эйнштейна
- •5. Формулы релятивистской динамики
- •6. Закон взаимосвязи массы и энергии
- •7. Инварианты релятивистской механики
- •Контрольные вопросы
- •Заключение
- •Приложение 1.
- •Скалярное и векторное произведение векторов
- •Производная и дифференциал
- •Производные элементарных функций
- •Элементы интегрального исчисления
- •Приложение 2.
- •Оценка систематической (приборной) погрешности
- •Оценка случайной погрешности. Доверительный интервал и доверительная вероятность
- •Методика расчета погрешностей измерений. Погрешности прямых измерений
- •Погрешность косвенных измерений
- •Пример оформления лабораторной работы
- •Порядок выполнения работы
- •Оценка погрешностей измерения
- •2.Вычисление систематической (приборной) погрешности
- •4. Вычисление суммарной погрешности
- •5. Относительная погрешность, или точность измерений
- •6. Запись окончательного результата
- •Графическое представление результатов измерений
- •Общие рекомендации по построению графиков
- •Библиографический список
- •Оглавление
3.2. Центр масс механической системы и закон его движения
Рис.3.1
От динамики отдельной материальной точки перейдем к динамике произвольной системы материальных точек, т.е. произвольной механической системы.
Пусть в некоторой инерциальной системе
координат положения взаимодействующих
точек с массами m1,
m2, …mn
задаются в каждый момент времени
посредством радиус-векторов
(рис.3.1). Тогда центром масс (центром
инерции) рассматриваемой системы
материальных точек называется такая
точка С, радиус-вектор которой определяется
по формуле
,
(3.7)
где m – масса системы материальных точек.
Если начало системы координат совместить с центром масс, то
,
(3.8)
т.е. центр масс – это геометрическая точка, для которой сумма произведений масс всех материальных точек, образующих механическую систему, на их радиус-векторы, проведенные из этой точки, равна нулю.
В случае непрерывного распределения массы, например, в твердом теле, радиус-вектор центра масс определяется интегрированием
.
(3.9)
Определим скорость центра масс системы
,
(3.10)
где
-
импульс механической системы.
Следовательно, импульс системы равен произведению ее массы на скорость центра масс
.
(3.11)
Установим закон движения центра масс механической системы.
Р
Рис.3.2
Предположим, что в некоторый момент
времени t импульсы
тел системы соответственно равны
.
В результате действия внешних и внутренних
сил импульсы будут изменяться. По второму
закону Ньютона для каждого из тел
механической системы можно написать
(3.12)
где
и
- соответственно все внутренние и внешние
силы, действующие на i-е
тело системы.
Суммируя левые и правые части уравнений (3.12), получаем
(3.13)
При сложении было учтено, что по третьему
закону Ньютона (
)
геометрическая сумма внутренних сил
системы равна нулю.
Векторная сумма всех внешних сил, действующих на систему,
(3.14)
называется главным вектором внешних сил.
Таким образом, из (3.13 ) – (3.14) следует
,
(3.15)
где
-
импульс системы тел.
Это уравнение, полученное нами с помощью второго и третьего законов Ньютона, выражает закон изменения импульса механической системы. Оно показывает, что скорость изменения импульса механической системы равна главному вектору всех внешних сил, действующих на эту систему.
С учетом (3.11) представим уравнение (3.15) в виде
или
.
(3.16)
Это уравнение называется уравнением движения центра масс механической системы. Центр масс механической системы движется как материальная точка, масса которой равна массе всей системы и на которую действует сила, равная главному вектору внешних сил, приложенных к системе.
Твердое тело эквивалентно системе материальных точек, поэтому это уравнение называют также основным уравнением динамики поступательного движения твердого тела.
