
- •Введение Физика как наука. Содержание и структура физики
- •I Механика
- •1.1 Кинематика материальной точки
- •1.1.1 Понятие материальной точки. Система отсчета. Траектория, путь, перемещение Единицы измерения
- •1.1.2 Скорость и ускорение произвольно движущейся точки
- •1.1.3 Кинематика прямолинейного движения
- •1.1.4 Движение точки по окружности. Связь между линейными и угловыми кинематическими параметрами
- •1.1.5 Колебательное движение. Виды гармонических колебаний
- •1.1.6 Сложение гармонических колебаний
- •1.2 Динамика материальной точки
- •1.2.1 Законы Ньютона. Масса, сила. Закон сохранения импульса, реактивное движение
- •1.2.2 Силы в механике
- •1.2.3 Работа сил в механике, энергия. Закон сохранения энергии в механике
- •1.3 Динамика вращательного движения твердых тел
- •1.3.1 Момент силы, момент импульса. Закон сохранения момента импульса
- •1.3.2 Кинетическая энергия вращательного движения. Момент инерции
- •II Раздел молекулярная физика и термодинамика
- •2.1 Основные положения молекулярно-кинетической теории газов
- •2.1.1 Агрегатные состояния вещества и их признаки. Методы описания физических свойств вещества
- •2.1.2 Идеальный газ. Давление и температура газа. Шкала температур
- •2.1.3 Законы идеального газа
- •2.2 Распределение Максвелла и Больцмана
- •2.2.1 Скорости газовых молекул
- •2.3. Первое начало термодинамики
- •2.3.1 Работа и энергия в тепловых процессах. Первое начало термодинамики
- •2.3.2 Теплоемкость газа. Применение первого начала термодинамики к изопроцессам
- •2.4. Второе начало термодинамики
- •2.4.1. Работа тепловых машин. Цикл Карно
- •2.4.2 Второе начало термодинамики. Энтропия
- •2.5 Реальные газы
- •2.5.1 Уравнение Ван-дер-Ваальса. Изотермы реального газа
- •2.5.2 Внутренняя энергия реального газа. Эффект Джоуля—Томсона
- •III Электричество и магнетизм
- •3.1 Электростатика
- •3.1.1 Электрические заряды. Закон Кулона
- •3.1.2 Напряженность электрического поля. Поток линий вектора напряженности
- •3.1.3 Теорема Остроградского — Гаусса и его применение для расчета полей
- •3.1.4 Потенциал электростатического поля. Работа и энергия заряда в электрическом поле
- •3.2 Электрическое поле в диэлектриках
- •3.2.1 Электроемкость проводников, конденсаторы
- •3.2.2 Диэлектрики. Свободные и связанные заряды, поляризация
- •3.2.3 Вектор электростатической индукции. Сегнетоэлектрики
- •3.3 Энергия электростатического поля
- •3.3.1 Электрический ток. Законы Ома для постоянного тока
- •3.3.2 Разветвленные цепи. Правила Кирхгофа. Работа и мощность постоянного тока
- •3.4 Магнитное поле
- •3.4.1 Магнитное поле. Закон Ампера. Взаимодействие параллельных токов
- •3.4.2 Циркуляция вектора индукции магнитного поля. Закон полного тока.
- •3.4.3 Закон Био—Савара—Лапласа. Магнитное поле прямого тока
- •3.4.4 Сила Лоренца Движение заряженных частиц в электрических и магнитных полях
- •3.4.5 Определение удельного заряда электрона. Ускорители заряженных частиц
- •3.5 Магнитные свойства вещества
- •3.5.1 Магнетики. Магнитные свойства веществ
- •3.5.2 Постоянные магниты
- •3.6 Электромагнитная индукция
- •3.6.1 Явления электромагнитной индукции. Закон Фарадея. Токи Фуко
- •3.6.2 Ток смещения. Вихревое электрическое поле Уравнения Максвелла
- •3.6.3 Энергия магнитного поля токов
- •IV Оптика и основы ядерной физики
- •4.1. Фотометрия
- •4.1.1 Основные фотометрические понятия. Единицы измерений световых величин
- •4.1.2 Функция видности. Связь между светотехническими и энергетическими величинами
- •4.1.3 Методы измерения световых величин
- •4.2 Интерференция света
- •4.2.1 Способы наблюдения интерференции света
- •4.2.2 Интерференция света в тонких пленках
- •4.2.3 Интерференционные приборы, геометрические измерения
- •4.3 Дифракция света
- •4.3.1 Принцип Гюйгенса—Френеля. Метод зон Френеля. Зонная пластинка
- •4.3.2 Графическое вычисление результирующей амплитуды. Применение метода Френеля к простейшим дифракционным явлениям
- •4.3.3 Дифракция в параллельных лучах
- •4.3.4 Фазовые решетки
- •4.3.5 Дифракция рентгеновских лучей. Экспериментальные методы наблюдения дифракции рентгеновских лучей. Определение длины волны рентгеновских лучей
- •4.4 Основы кристаллооптики
- •4.4.1 Описание основных экспериментов. Двойное лучепреломление
- •4.4.2 Поляризация света. Закон Малюса
- •4.4.3 Оптические свойства одноосных кристаллов. Интерференция поляризованных лучей
- •4.5 Виды излучения
- •4.5.1 Основные законы теплового излучения. Абсолютно черное тело. Пирометрия
- •4.5.2 Источники света
- •4.6 Действие света
- •4.6.1 Фотоэлектрический эффект. Законы внешнего фотоэффекта
- •4.6.2 Эффект Комптона
- •4.6.3 Давление света. Опыты Лебедева
- •4.6.4 Фотохимическое действие света. Основные фотохимические законы. Основы фотографии
- •4.7 Развитие квантовых представлений об атоме
- •4.7.1 Опыты Резерфорда по рассеянию альфа-частиц. Планетарно-ядерная модель атома
- •4.7.2 Спектр атомов водорода. Постулаты Бора
- •4.7.3 Корпускулярно-волновой дуализм. Волны де Бройля
- •4.7.4 Волновая функция. Соотношение неопределенности Гейзенберга
- •4.8 Физика атомного ядра
- •4.8.1 Строение ядра. Энергия связи атомного ядра. Ядерные силы
- •4.8.2 Радиоактивность. Закон радиоактивного распада
- •4.8.3 Радиоактивные излучения
- •4.8.4 Правила смещения и радиоактивные ряды
- •4.8.5 Экспериментальные методы ядерной физики. Методы регистрации частиц
- •4.8.6 Физика элементарных частиц
- •4.8.7 Космические лучи. Мезоны и гипероны. Классификация элементарных частиц
- •Содержание
4.6.2 Эффект Комптона
Исследуя в 1923 г. рассеяние рентгеновских лучей, Комптон пришел к открытию, известному теперь в науке под названием явления Комптона, которое, как и фотоэффект, подтверждает гипотезу о существовании фотонов. Комптон изучал рассеяние жесткого рентгеновского излучения на телах, состоящих из легких атомов (графит, парафин и пр.). Схема опыта Комптона представлена на рисунке - 4.63. Монохроматическое рентгеновское излучение с длиной волны λ, исходящее из рентгеновской трубки, проходит через диафрагмы. Оно, в виде узкого пучка, направляется на рассеивитель. Рассеянные лучи анализируются с помощью спектрографа рентгеновских лучей. Оказалось, что в рассеянном излучении, наряду с исходной длиной волны λ, появляется смещенная линия с длиной волны λ' > λ. Изменение длины волны λ'-λ в длинноволновую сторону спектра при рассеянии излучения получило название комптоновского смещения, а само явление — эффекта Комптона. Опыт показал, что комптоновское смещение λ'-λ не зависит от состава рассеивающего тела и длины падающей волны λ. Оно пропорционально квадрату синуса половины угла рассеяния θ.
∆λ = (λ'-λ) = h/m0с (1 - cosθ) = 2h/m0с sin2θ/2 |
(4.74), |
где θ — угол рассеяния (угол между направлениями распространения первичного и рассеянного лучей), λк = 2,436 пм - постоянная Комптона, найденная из опыта. Она описывает величину изменения длины волны при рассеянии под углом 90°.
Явление Комптона было объяснено на основе квантовой теории света. Будем рассматривать взаимодействие рентгеновского излучения с веществом как процесс столкновения рентгеновских фотонов со свободными электронами. Столкновение фотона со свободными электронами будем считать упругим. Рассмотрение проведем на основе законов сохранения энергии и импульса.
Пусть на покоящийся электрон с массой т0 падает квант рентгеновского излучения с энергией hv. В результате упругого столкновения рентгеновского фотона с покоящимся электроном последний приобретает импульс, равный mv, и происходит рассеяние фотона с энергией hv' под углом θ (рисунок - 4.64) Применяя закон сохранения энергии и импульса, получим:
hv +m0c2 = hv' + тс2,
(mv)2 =( hv/c)2 + (hv' /c)2 – (2h2/ c2(ν-v')) cosθ׳
Перепишем первое уравнение этой системы в виде m2c4 = h2ν2 + h2 (ν')2 – 2h2νv' + m0с4 + 2h2m0с2 (v - v'). Вычитая из этого уравнения второе уравнение системы и принимая во внимание, что m = m0/ √1 – v2/c2, получим hνv' (1 - cos θ) = m02c2 (v - v'). Переходя от частоты к длине волны (v = с/λ и v' — с/λ'), получим
∆λ = h/m0с (1 - cosθ) = 2h/m0с sin2θ/2 |
(4.75), |
где ∆λ = λ' — λ. Формула, полученная при этом, есть нечто иное, как полученная экспериментально формула Комптона.
Подстановка значения h, m0 и с дает λк =2h/m0с = 2,436 пм (что совпадает с данными, полученными Комптоном из эксперимента). Универсальная постоянная λк является одной из важнейших атомных постоянных. Она называется комптоновской длиной для электрона.
Комптоновская длина представляет собой изменение длины волны фотона при его рассеянии на угол θ/2 на свободном неподвижном электроне. Существует комптоновская длина для протона, нейтрона и других элементарных частиц. Она также определяется полученным выражением для λк, если в нем массу электрона заменить на массу соответствующей частицы.
|
|
Рисунок - 4.63 |
Рисунок - 4. 64 |