
- •Глава 1. Основы теплообмена
- •1.1. Радиационное охлаждение
- •1.3. Перенос тепла в теплозащитном покрытии (тзп)
- •1.3.1. Пористое охлаждение
- •1.4. Физико-химические основы разрушения теплозащитных материалов
- •1.5. Немного о графите
- •1.6. Радиационный теплообмен
- •Глава 2. Особенности работы рдтт
- •Глава 3. Композиционные материалы
- •3.1 Межфазное взаимодействие
- •3.1.1 Армирующие волокна
- •3.1.2. Матричные материалы
- •3.2. Полимерные матрицы
- •3.3 Адгезия в твердых полимерах
- •3.4 Межфазовые взаимодействия в км
- •3.1 Смачивание
- •10. Схема смачивания:
- •Глава 4. Полимерные пластики
- •4.1. Стеклопластики
- •4.1.1 Методы изготовления стеклопластиковых изделий
- •4.1.2 Связующие
- •4.1.3. Стекловолокнистые
- •4.1.4. Свойства стеклопластиков
- •4.2. Органопластики
- •4.2.1. Синтетические волокна
- •4.2.2. Другие искусственные волокна
- •4.2.3. Высокопрочные органические волокна
- •4.3.1. Порядок изготовления корпуса
- •Глава 5
- •5.1. Армирующие волокна
- •Температурная зависимость модуля упругости и прочности волокон
- •Сравнительные характеристики волокон
- •Свойства борных волокон, произведенных в разных станах
- •5.2. Металлические матрицы
- •5.2.1. Матрицы на основе алюминия
- •5.2.2. Системы al—в и алюминий – борсик
- •Глава 6
- •6.1. Физические свойства
- •6.2. Изменение свойств
- •Основные свойства и реакции графита
- •6.4. Получение
- •Важнейшие исходные материалы:
- •6.4.1. Характеристика исходных материалов и
- •6.5. Углеродные волокна
- •6.5.1. Некоторые свойства углеродных волокон
- •Механические свойства некоторых углеродных волокон
- •Физические свойства углеродных волокон
- •Свойства некоторых пкм с волокнистыми наполнителями
- •6.6. Углепластики
- •6.6.1. Технология изготовления углепластиков
- •6.6.1.1. Метод прямого прессования
- •6.6.1.2. Метод намотки
- •Механические свойства вольфрамовой проволоки
- •Характеристики умп
- •6.7.1. Технология изготовления углеметаллопластиков
- •Режимы резания
- •Теплофзические свойства углеметалопластиков
- •Режимы резания
- •Теплофзические свойства углеметалопластиков
- •6.8. Углерод-углеродные композиционные материалы
- •6.8.1. Краткое описание технологии получения раструба из уукм
- •6.8.2. Пластинчатый пирографит
- •Глава 7: получение изделий методами порошковой металлургии
- •7.1.Методы получения и свойства металлических порошков
- •7.1.1. Свойства металлических порошков
- •7.1.1.1. Физические свойства
- •7.1.1.2. Методы исследования гранулометрического состава порошков.
- •7.1.1.3. Форма частиц
- •7.1.1.4. Микротвердость
- •7.1.1.5. Удельная поверхность
- •7.1.1.6. Состояние кристаллической структуры металлических порошков
- •7.2. Технологические свойства порошков
- •7.2.1. Насыпной вес
- •7.2.2. Текучесть порошков
- •7.2.3. Прессуемость
- •7.3. Производство порошков
- •7.3.1. Метод восстановления
- •7.3.1.1. Физико–химические
- •7.3.1.2. Восстановление газами и углеродом
- •7.3.2. Получение порошков электролизом
- •7.3.3. Методы механического дробления
- •7.3.4. Распыление расплавов металлов и сплавов
- •7.4. Прессование порошков
- •7.5. Спекание порошков.
- •7.6. Вольфрам
- •7.6.1. Химические свойства вольфрама
- •7.6.2. Разрушение вольфрама под действием
- •7.6.3. Действие горячих газов на вольфрам
- •7.7. Псевдосплавы на основе
- •7.7.1. Технология изготовления облицовки из псевдосплава авмг
- •7.7.1.1. Недостатки технологии
- •7.7.2. Псевдосплав вндс-1
- •7.7.2.1. Технология получения вндс
- •1. Как и в случае с авмг, производятся такой же химический и другие анализы порошков.
- •7.7.2.2. Пропитка пористой
- •Глава 8
- •8.1. Карбиды
- •8.1.1. Карбид кремния
- •8.1.2. Силицированныи графит
- •8.1.3. Карбид титана
- •8.1.4. Карбид бора
- •8.2. Нитриды
- •8.2.1. Получение нитридов
- •8.2.2. Нитриды бора и кремния
- •8.2.3. Нитриды бериллия и алюминия
- •8.2.4. Нитриды скандия, иттрия,лантана и редкоземельных элементов
- •8.2.5. Нитриды титана,циркония и гафния
- •8.2.6. Физико-механическиеи химические свойства нитридов
- •8.2.7. Области применениябескислородной керамики
- •Глава 9
- •9.1. Сплавы на основе алюминия
- •9.1.1 Деформируемые алюминиевые сплавы
- •9.1.1.2. Конструкционные свариваемые сплавы
- •9.1.1.3. Сплавы, упрочняемыетермической обработкой
- •9.1.1.4. Высокопрочные сплавы
- •9.1.1.5. Жаропрочные сплавы
- •9.1.1.6. Ковочные сплавы
- •9.1.1.7. Литейные сплавы
- •9.1.2. Композиционные сплавы
- •9.2. Бериллии и его сплавы
- •9.2.1. Минералы бериллия
- •9.2.2. Свойства бериллия
- •9.2.3. Сплавы бериллия
- •9.3.1. Краткие исторические сведения
- •9.3.2. Получение титана. Его свойства
- •9.3.3. Промышленные титановые сплавы
- •9.3.3.1. Деформируемые сплавы
- •Свойства жаропрочных сплавов
- •9.3.3.2. Литейные сплавы
- •9.4. Ниобии и его сплавы
- •9.4.1. Краткие исторические сведения
- •9.4.2. Сырьевые источники
- •9. 4. 3. Физические свойства ниобия
- •9.4.4. Химические свойства ниобия
- •9.4.5 Коррозионные свойства
- •9.4.6 Сплавы ниобия и их свойства
- •9.4.7 Конструкционные сплавы
- •9.4.7.1. Сплавы низкой прочности
- •9.4.7.2. Сплавы средней прочности
- •9.4.7.3. Сплавы высокой прочности
- •9.4 7.4. Прецизионные сплавы
- •9.4.8. Применение ниобия и его сплавов
- •9.5. Молибден
- •9.5.1. Краткие исторические сведения
- •9.5.2. Свойства молибдена
- •Физико-механические свойства молибдена
- •9.5.3. Минералы, руды и рудные концентраты
- •9.5.4. Способы переработки
- •9.6 Тантал и его сплавы
- •9.6.1 Краткие исторические сведения
- •9.6.2 Физико-механические свойства
- •9.6.3 Минералы, руды и рудные концентраты
- •9.6.4 Получение тантала
- •9.6.5 Сплавы тантала
- •Химический состав и механические свойства жаропрочных танталовых сплавов
- •9.6.6. Области применения
- •9.7. Ванадий и его сплавы
- •9.7.1. История открытия ванадия
- •9.7.2. Определение ванадия
- •9.7.3. Свойства ванадия
- •Химический состав металлического ванадия
- •Механические свойства ванадия
- •9.7.4. Сплавы ванадия
- •9.7.5. Применение ванадия и его сплавов
- •9.8. Цирконий
- •9.8.1. Свойства циркония
- •Физические свойства циркония
- •9.8.2. Области применения циркония
- •9.8.2.1. Атомная энергетика
- •9.8.2.2. Пиротехника и производство боеприпасов
- •9.8.2.3. Машиностроение
- •9.8.3. Производство сталей и сплавов
- •9.8.4. Производство огнеупоров, фарфора,
- •9.8.5. Прочие области применения
- •9.8.6. Минералы, руды и рудные концентраты
- •9.8.7. Способы получения циркония
- •Глава 1. Основы теплообмена
6.5.1. Некоторые свойства углеродных волокон
МЕХАНИЧЕСКИЕ СВОЙСТВА. Благодаря низкой плотности и высоким прочностным свойствам, углеродные волокна имеют наиболее высокие удельные характеристики.
Коротко дадим понятие удельных характеристик прочности: удельной прочности и удельного модуля упругости.
Удельная прочность - это отношение прочности при растяжении к удельному весу:
Удельный модуль упругости - это отношение модуля упругости к удельному весу:
где
где р - плотность, кг/м3; g - ускорение силы тяжести, м/с2; σв - прочность при растяжении, Па; Е - модуль упругости, Па.
Если в выражения для σуд и аналогично для Еуд подставить значения входящих туда величин, получим:
Следовательно, σуд и Еуд в системе СИ измеряются в метрах, но для уменьшения получаемых при этом чисел в ракетной технике принято применять величину в 1 000 раз большую, т. е. километр.
Например,
если прочность нити в=
36-108
Па; плотность р = 1 800 кг/м3;
ускорение силы тяжести g
= 10 м/с2,
то удельная прочность
5. 160
129
σуд = 2 · 105 м = 200 км.
Для удельного модуля это число будет еще больше.
В ракетной технике широко пользуются терминами удельной прочности и удельного модуля, выраженных в километрах. Для сравнения нужно отметить, что удельная прочность лучших сталей и алюминиевых сплавов составляет не более 50 км.
Правда, разброс вышеуказанных показателей для углеродных волокон иногда достигает 20...25 %. Это обусловлено наличием дефектов внутренней и внешней структуры УВ. Залечивание внешних дефектов путем травления, ионной бомбардировки и нанесения покрытий, приводит к повышению прочности УВ и уменьшению разброса показателей.
По прочности УВ делятся на три группы:
– низкопрочные, (σв < 500 МПа);
– средней прочности, (σв = 500... 1500 МПа);
– высокопрочные, (σв > 1 500 МПа).
Модуль упругости изменяется в пределах от 30 до 700 ГПа и пропорционально зависит от плотности углеродного волокна (табл. 18).
Высокопрочные углеродные волокна используются в композиционных материалах для несущих конструкций, остальные - для теплозащитных и эрозионностойких материалов, теплоизоляции и т. д.
ФИЗИЧЕСКИЕ СВОЙСТВА углеродных волокон такие же, как у компактных углеродных материалов, хотя плотность их значительно ниже, чем у графита (теоретическая плотность 2 260 кг/м3), что обусловлено менее совершенной структурой УВ и большей пористостью.
Для УВ характерна развитая пористость и большая удельная поверхность, достигающая 2 000 м2/г при определенной термообработке (табл. 19).
В последние годы разработаны волокнистые в том числе имп- регнированные различными веществами сорбенты в виде тканей, войлока, которые получают путем обработки исходных вискозных заготовок в среде углекислого газа при повышенных температурах.
130
Таблица 18
Механические свойства некоторых углеродных волокон
Марка материала |
Срана |
d, мкм |
ρ, ГПа |
Е, ГПа |
σв, МПа |
Ɛ, % |
ВМН-3 |
|
7,0 |
|
250 |
1430 |
|
ВМН-4 |
|
6,0 |
1710 |
270 |
2210 |
|
Урал-15 |
СССР |
|
1600 |
80 |
1600 |
|
Урал-24 |
|
|
1800 |
200 |
2000 |
|
Кулон |
|
|
1900 |
600 |
2000 |
|
Графил-А |
|
|
1760 |
192 |
2550 |
|
Графил-HMS |
Англия |
|
1880 |
400 |
2000 |
0,6 |
Модмор-1 |
|
7,8 |
2000 |
450 |
2300 |
0,5 |
Тип-ВМ |
|
7,5 |
1940 |
380 |
1890 |
|
Торнел-100 |
США |
9,4 |
1950 |
690 |
3450 |
|
Торнел-400 |
|
|
1780 |
206 |
2750 |
1,0 |
Ригилор-АС |
Франция |
12,4 |
1750 |
200 |
2000 |
1,5 |
Торейка-М-40 |
Япония |
7,9 |
1800 |
400 |
2500 |
1,5 |
Обозначения: d – диаметр волокна; ρ – плотность; Е – модуль упругости; σв – прочность при растяжении; Ɛ – относительное удлинение.
Таблица 19