
- •Е. И. Шангина компьютерная графика
- •Предисловие
- •Глава 1 геометрические множества и системы координат
- •1. Множества
- •1.1. Основные понятия теории множеств
- •1.2. Отображения и преобразования
- •1.3. Теоретико-множественный подход к задачам на построение
- •1.4. Геометрические пространства и их размерность
- •1.5. Формирование пространства
- •1.6. Приёмы подсчета параметров
- •6. Расслоение множества на классы эквивалентности.
- •1.7. Параметрический подход к решению задач начертательной геометрии
- •2. Системы координат
- •2.1. Прямоугольные декартовы координаты
- •2.2. Полярные координаты точки на плоскости
- •2.3. Цилиндрические координаты
- •2.4. Сферические координаты
- •Вопросы для самопроверки
- •Глава 2 компьютерные технологии геометрического моделирования
- •1. Запуск системы AutoCad
- •2. Вид рабочего окна AutoCad
- •Падающее меню
- •Стандартная панель (Standard Toolbar)
- •Графическое поле
- •Изменения (Modify)
- •Строка состояния
- •Командная строка
- •Координаты графического курсора
- •Линейки прокрутки
- •4. Строка состояния
- •5. Ввод команд
- •6. Панели инструментов
- •7. Стандартная панель инструментов
- •8. Панель инструментов Object Properties ( Свойства объекта)
- •9. Графические примитивы
- •10. Ввод координат точки
- •11. Панель инструментов Draw (Рисовать)
- •12. Построение геометрических примитивов
- •12.1. Точка
- •12.2. Построение линий
- •12.2.1. Отрезок
- •12.2.2. Прямая и луч
- •12.2.3. Полилиния
- •12.2.4. Сплайн
- •12.3. Построение многоугольников
- •12.3.1. Многоугольник
- •12.3.2. Прямоугольник
- •12.4. Построение окружностей, эллипсов и их дуг
- •12.4.1. Окружность
- •12.4.2. Эллипс
- •12.4.3. Дуга окружности
- •13. Текстовые стили
- •13.1. Однострочный текст
- •13.2. Многострочный текст
- •14. Блок
- •14.1. Создание блоков
- •П Рис. 37.Ри создании блока в диалоговом окнеBlock Definition (Описание блока) следует:
- •14.2. Вставка блока
- •15. Создание замкнутых объектов
- •16. Штриховка
- •17. Панель инструментов Object Snap (Объектная привязка)
- •18. Панель инструментов Modify (Изменить или редактировать)
- •18.1. Удаление и восстановление объектов
- •18.2. Копирование объектов
- •18.3. Зеркальное отображение объектов
- •18.4. Построение подобных примитивов
- •Если выбрать режим Through, то подобный объект будет построен проходящим через заданную впоследствии точку на чертеже.
- •18.5. Размножение объектов массивом
- •1 Рис. 48.8.6. Перемещение объектов
- •18.7. Поворот объектов
- •18.8. Масштабирование объектов
- •При использовании команды Scale (Масштаб) базовая точка не меняет своего положения при изменении размеров объекта.
- •18.9. Растягивание объектов
- •18.10. Подрезание объектов
- •18.11. Удлинение объектов
- •18.12. Разбиение объектов на части
- •Выполнить упражнение № 67.
- •18.13. Вычерчивание фасок
- •18.14. Построение сопряжений углов
- •19. Редактирование с помощью маркеров grips («ручки»)
- •Первое действие при работе со средством редактирования Grips.
- •Второе действие при работе со средством редактирования Grips.
- •20. Диспетчер свойств объектов
- •21. Панель инструментов Dimension (Измерение)
- •21.1. Линейные размеры
- •Опции команды Dimliner (Размер линейный):
- •21.2. Параллельные размеры
- •21.3. Базовые размеры
- •21.4. Размерная цепь
- •21.5. Радиальные размеры
- •21.6. Угловые размеры
- •21.7. Координатные размеры
- •21.8. Выноски и пояснительные надписи на чертеже
- •21.9. Быстрое нанесение размеров
- •21.10. Нанесение меток центра окружности или дуги
- •21.11. Редактирование размерных стилей
- •22. Зумирование
- •23. Панорамирование
- •Вопросы для самопроверки
- •Глава 3 трёхмерное моделирование
- •1. Общие сведения
- •2. Задание трёхмерных координат
- •3. Задание пользовательской системы координат
- •4. Пространство модели и пространство листа
- •5. Видовые экраны
- •5.1. Создание неперекрывающихся видовых экранов
- •6. Установка видов на графическом поле
- •6.1. Установка направления взгляда
- •6.2. Задание направления взгляда с помощью диалогового окна
- •6.3. Установка плана изображения
- •6.4. Установка ортогональных и аксонометрических видов
- •6.5. Интерактивное управление точкой взгляда
- •6.6. Динамическое вращение трехмерной модели
- •7. Моделирование каркасов
- •7.1. Трехмерная полилиния
- •7.2. Средства редактирования трехмерной полилинии
- •8. Твердотельное моделирование
- •9. Стандартные тела
- •9.1. Параллелепипед
- •9.2. Клин
- •Выполнить упражнение № 99.
- •9.3. Сфера
- •9.4. Конус
- •9.5. Цилиндр
- •10. Тела пользователя
- •10.1. Выдавленное тело
- •10.2. Тело вращения
- •11. Тела, созданные комбинированием нескольких тел
- •11.1. Объединение объектов
- •11.2. Вычитание объектов
- •11.3. Пересечение объектов
- •12. Общие средства редактирования трехмерных объектов
- •12.1. Поворот вокруг оси
- •Выполнить упражнение № 115.
- •12.2. Зеркальное отображение относительно плоскости (плоскостная симметрия)
- •12.3. Размножение трехмерным массивом
- •12.4. Вычерчивание фасок трехмерных тел
- •12.5. Построение сопряжений граней
- •12.6. Построение сечений
- •12.7. Построение разрезов
- •Выполнить упражнение № 124.
- •13. Редактирование граней, ребер, тел
- •13.1. Режим редактирования граней твердотельного объекта
- •13.2. Режим редактирования ребер
- •14. Пример построения трехмерной модели
- •15. Перекрывающиеся видовые экраны. Создание ортогональных проекций
- •16. Визуализация трёхмерных моделей
- •16.1. Удаление невидимых линий
- •16.2. Раскрашивание трёхмерной модели
- •16.3. Тонирование изображений трёхмерных объектов
- •16.4. Включение фона в изображение сцены
- •16.5. Настройка освещения
- •Выполнить упражнение № 137.
- •16.6. Тени
- •16.7. Работа с материалами
- •Вопросы для самопроверки
- •Заключение
- •Список литературы
- •Приложения
- •П ример выполнения рабочего чертежа детали
- •Задание для выполнения графической работы № 1
- •Задание для выполнения графической работы № 3
- •Пример построения твердотельной модели
- •Задание для выполнения графической работы № 4
- •Оглавление
- •620144, Г. Екатеринбург, ул. Куйбышева, 30.
9. Графические примитивы
Примитив – это заранее определённый основной геометрический элемент, при помощи которого строятся более сложные модели. Система AutoCAD использует обширный набор примитивов: точки, отрезки, круги, дуги, полилинии (непрерывная последовательность отрезков и дуг), мультилинии (ломаная линия, сегменты которой состоят из нескольких параллельных отрезков), сплайны (гладкая кривая, проходящая через заданный набор точек), тексты, блоки (именованный объект, сформированный из нескольких примитивов), эллипсы, многоугольники, фигуры (часть плоскости, ограниченная тремя или четырьмя отрезками) и т. д. Общими свойствами, которыми обладают все примитивы, являются принадлежность к слою, цвет и тип линии. Многие примитивы обладают также толщиной. Отдельные примитивы (текст, блок) имеют специальные свойства (угол наклона, точка вставки и др.).
10. Ввод координат точки
Ввод координат в AutoCAD осуществляется двумя способами:
Непосредственно с клавиатуры, путём задания численных значений в командной строке.
При помощи графического курсора, который перемещается по экрану мышью или клавишами управления курсором. Ввод координаты осуществляется щелчком левой кнопки мыши.
При этом в строке состояния, расположенной в нижней части Рабочего стола, происходит отображение текущих значений координат. Для удобства ввода координат можно использовать следующие режимы, которые устанавливаются в строке состояния:
ORTHO (Орто) – режим, когда изменение происходит только по осям x или y.
SNAP (Шаговая привязка) – привязка к узлам невидимой сетки, определённой с некоторым шагом по x и y.
КООРДИНАТЫ ТОЧКИ В ДВУМЕРНОМ ПРОСТРАНСТВЕ
В двумерном пространстве точка определяется в плоскости xОy, которая называется плоскостью построений. Точка может быть задана абсолютными и относительными координатами. Ввод значений абсолютных координат в системе AutoCAD может осуществляться в следующих форматах:
Прямоугольные (декартовы) координаты: …point: x,y.
В случае использования такого формата необходимо на запрос системы о местоположении точки ввести с клавиатуры численное значение координаты x, затем через запятую – значение координаты y, а также направление (+ или -).
Полярные координаты: …point: <,
где - длина вектора (расстояние), соединяющего точку с началом координат,
- угол наклона этого вектора относительно предыдущей точки (< - специальный символ, знак «меньше»). За положительное направление изменения угла принято вращение против часовой стрелки от положительного направления оси x.
Относительные координаты не ссылаются на точку начала системы отсчёта. Относительные координаты – это смещение по осям x и y от предыдущей введённой точки.
Прямоугольные координаты: …point: @x,y.
Для ввода относительных прямоугольных координат точек необходимо сначала ввести специальный символ @, который вводится нажатием комбинации клавиш SHIFT+2, а затем приращение по оси абсцисс x, запятую и приращение по оси ординат y.
Полярные координаты: …point: @.
В системе AutoCAD допускается использовать прямую запись расстояния, что особенно удобно для быстрого ввода длины линии. Для ввода координат точки, отстоящей на заданное расстояние и в заданном направлении, необходимо вначале переместить графический курсор в желаемом направлении, а затем напечатать в командной строке требуемое расстояние: point: 85.