
- •Введение
- •Основные понятия и определения
- •Типы данных
- •1.1.1. Понятие типа данных
- •1.2.2. Внутреннее представление базовых типов в оперативной памяти
- •1.2.2. Внутреннее представление структурированных типов данных
- •1.2.3. Статическое и динамическое выделение памяти
- •Абстрактные типы данных (атд)
- •Понятие атд
- •1.2.2. Спецификация и реализация атд
- •Структуры данных
- •1.3.1. Понятие структуры данных
- •1.3.2. Структуры хранения — непрерывная и ссылочная
- •1.4.3. Классификация структур данных
- •Алгоритмы
- •1.4.1. Понятие алгоритма
- •1.4.2. Способы записи алгоритмов.
- •1.4.3. Введение в анализ алгоритмов Вычислительные модели
- •Задача анализа алгоритмов
- •Время работы алгоритма
- •Время выполнения в худшем и среднем случае
- •1.4.3. Введение в рекурсию
- •Первые примеры
- •1.5.1. Введение в «длинную» арифметику
- •1.5.2. Рекурсия
- •1.5.3. Поразрядные операции. Реализация атд «Множество»
- •2. Линейные структуры данных
- •2.1. Атд "Стек", "Очередь", "Дек"
- •2.2. Реализация стеков
- •2.2.1. Непрерывная реализация стека с помощью массива
- •2.2.2. Ссылочная реализация стека в динамической памяти
- •2.2.3. Примеры программ с использованием стеков
- •2.3. Реализация очередей
- •2.3.2. Непрерывная реализация очереди с помощью массива
- •2.3.2. Ссылочная реализация очереди в динамической памяти
- •2.3.3. Ссылочная реализация очереди с помощью циклического списка
- •2.3.4. Очереди с приоритетами
- •2.3.5. Пример программы с использованием очереди
- •2.4. Списки как абстрактные типы данных
- •2.4.1. Модель списка с выделенным текущим элементом
- •2.4.2. Однонаправленный список (список л1)
- •2.4.3. Двунаправленный список (список л2)
- •2.4.4. Циклический (кольцевой) список
- •2.5. Реализация списков с выделенным текущим элементом
- •2.5.1. Однонаправленные списки Ссылочная реализация в динамической памяти на основе указателей
- •2.5.2. Двусвязные списки
- •2.5.3. Кольцевые списки
- •2.5.4. Примеры программ, использующих списки Очередь с приоритетами на основе линейного списка
- •Задача Иосифа (удаление из кольцевого списка)
- •2.6. Рекурсивная обработка линейных списков
- •2.6.1. Модель списка при рекурсивном подходе
- •2.6.2. Реализация линейного списка при рекурсивном подходе
- •3. Иерархические структуры данных
- •3.1. Иерархические списки
- •3.1.1 Иерархические списки как атд
- •3.1.2. Реализация иерархических списков
- •3.2. Деревья и леса
- •3.2.1. Определения
- •3.2. Способы представления деревьев
- •3.2.3. Терминология деревьев
- •3.2.4. Упорядоченные деревья и леса. Связь с иерархическими списками
- •3.3. Бинарные деревья
- •3.3.1. Определение. Представления бинарных деревьев
- •3.3.2. Математические свойства бинарных деревьев
- •3.4. Соответствие между упорядоченным лесом и бинарным деревом
- •3.5. Бинарные деревья как атд
- •3.6. Ссылочная реализация бинарных деревьев
- •3.6.1. Ссылочная реализация бинарного дерева на основе указателей
- •3.6.2. Ссылочная реализация на основе массива
- •3.6.3. Пример — построение дерева турнира
- •3.7. Обходы бинарных деревьев и леса
- •3.7.1. Понятие обхода. Виды обходов
- •3.7.2. Рекурсивные функции обхода бинарных деревьев
- •3.7.3. Нерекурсивные функции обхода бинарных деревьев
- •3.7.4. Обходы леса
- •3.7.5. Прошитые деревья
- •3.8. Применения деревьев
- •3.8.1. Дерево-формула
- •3.8.2. Задача сжатия информации. Коды Хаффмана
- •4. Сортировка и родственные задачи
- •4.1. Общие сведения
- •4.1.1. Постановка задачи
- •4.1.2. Характеристики и классификация алгоритмов сортировки
- •4.2. Простые методы сортировки
- •4.2.1. Сортировка выбором
- •4.2.2. Сортировка алгоритмом пузырька
- •4.2.3.Сортировка простыми вставками.
- •4.3. Быстрые способы сортировки, основанные на сравнении
- •4.3.1. Сортировка упорядоченным бинарным деревом
- •Анализ алгоритма сортировки бинарным деревом поиска
- •4.3.2. Пирамидальная сортировка
- •Первая фаза сортировки пирамидой
- •Вторая фаза сортировки пирамидой
- •Анализ алгоритма сортировки пирамидой
- •Реализация очереди с приоритетами на базе пирамиды
- •4.3.2. Сортировка слиянием
- •Анализ алгоритма сортировки слиянием
- •4.3.3. Быстрая сортировка Хоара
- •Анализ алгоритма быстрой сортировки
- •4.3.4. Сортировка Шелла
- •4.3.5. Нижняя оценка для алгоритмов сортировки, основанных на сравнениях
- •4.4. Сортировка за линейное время
- •4.4.1. Сортировка подсчетом
- •4.4.2. Распределяющая сортировка от младшего разряда к старшему
- •4.4.3. Распределяющая сортировка от старшего разряда к младшему
- •5. Структуры и алгоритмы для поиска данных
- •5.1. Общие сведения
- •5.1.1. Постановка задачи поиска
- •5.1.2. Структуры для поддержки поиска
- •5.1.3. Соглашения по программному интерфейсу
- •5.2. Последовательный (линейный) поиск
- •5.3. Бинарный поиск в упорядоченном массиве
- •5.4. Бинарные деревья поиска
- •5.4.1. Анализ алгоритмов поиска, вставки и удаления Поиск
- •Вставка
- •Удаление
- •5.4.3. Реализация бинарного дерева поиска
- •5.5. Сбалансированные деревья
- •Определение и свойства авл-деревьев
- •Вращения
- •Алгоритмы вставки и удаления
- •Реализация рекурсивного алгоритма вставки в авл-дерево
- •5.5.2. Сильноветвящиеся деревья
- •Бинарные представления сильноветвящихся деревьев
- •5.5.3. Рандомизированные деревья поиска
- •5.6. Структуры данных, основанные на хеш-таблицах
- •5.6.2. Выбор хеш-функций и оценка их эффективности
- •Модульное хеширование (метод деления)
- •Мультипликативный метод
- •Метод середины квадрата
- •5.6.2. Метод цепочек
- •5.6.3. Хеширование с открытой адресацией
- •5.6.4. Пример решения задачи поиска с использованием хеш-таблицы
5.3. Бинарный поиск в упорядоченном массиве
Он состоит в делении упорядоченного массива пополам, при этом мы определяем, в какой из двух половин находится искомый элемент. В упорядоченном массиве это сделать можно, сравнив искомый элемент и тот, который находится в точке деления. Обратим внимание, что размер массива уже сократился вдвое. Но продолжаем делить нужную половину массива. При этом локализуем уже четверть массива и т. д. Процесс продолжается до победного конца, когда в массиве останется один последний элемент. Если он совпадает с искомым значением, то поиск успешен, в противном случае имеем промах.
Максимальное количество делений массива пополам при таком способе составляет ближайшее целое, большее log2n , следовательно, асимптотическая оценка сложности поиска O(logn). Например, если в массиве 1000 элементов, то за 10 делений пополам мы уменьшим массив до одного элемента. Фактически можно закончить поиск и раньше, если искомый элемент окажется на границе двух половин на каком-либо промежуточном шаге. Это настоящий прорыв в ускорении поиска.
Попробуем оценить, во что обходится поддержание массива в отсортированном виде. Ведь новый элемент уже нельзя будет вставить в конец массива, а удаляемый элемент нельзя заменить последним. Действительно, порядок временной сложности вставки становится O(n), время удаления также увеличивается, но асимптотическая оценка остается по-прежнему O(n) (сначала просто движемся по массиву вперед, чтобы найти нужный элемент, после этого продолжаем движение, перемещая каждый элемент влево).
На практике вопрос о применении данного алгоритма обычно решают путем сравнения количества операций поиска и операций обновления. Если данные обновляются редко, и размер массива велик, то бинарный поиск существенно ускорит производительность всего приложения в целом.
В листинге 5.2 приведены два способа реализации бинарного поиска — итеративный и рекурсивный. На практике используется более эффективный итеративный вариант, но рекурсивное решение является хорошей иллюстрацией идеи бинарного поиска. Очевидно, уже понятно, что в основе ее лежит известный нам принцип «разделяй и властвуй».
Листинг 5.2. Бинарный поиск в отсортированном массиве
// рекурсивный вариант функции,
// начальный вызов: seach_bin_r(a, 0, n-1, k);
item seach_bin_r(item a[], int l, int r, T_key k)
{ int m=(l+r)/2;
if (a[m].key==k) return a[m];//
if (l==r) return nullitem;//
if (k<a[m].key) return seach_bin_r(a,l,m-1,k);
else return seach_bin_r(a,m+1,r,k);
}
// нерекурсивный вариант бинарного поиска
item seach_bin(item a[], int n, T_key k)
{ int l=0, r=n-1;
while (l<=r)
{ int m=(l+r)/2;
if (k>a[m].key) l=m+1;
else if (k<a[m].key) r=m-1;
else return a[m];
}
return nullitem;
}
5.4. Бинарные деревья поиска
Если проанализировать в целом реализацию поддержки поиска на основе линейной структуры, то можно сделать вывод, что любой вариант реализации включает функции с линейной временной сложностью алгоритма. Для обычного массива такой функцией является поиск (и удаление, если оно основано на поиске), для отсортированного — вставка и удаление. Если на больших совокупностях данных все эти операции выполняются достаточно часто, стоит подумать об отказе от линейной структуры в пользу иерархической. Для этого есть весомые основания — в древовидной структуре, в отличие от линейной, путь от корня к любым данным не превышает высоты дерева, следовательно, имеется реальная возможность вообще избавиться от медленных операций с линейной сложностью.
Бинарное дерево поиска уже упоминалось в предыдущей главе, посвященной сортировке. Напомним, что это упорядоченное бинарное дерево, у которого для каждого узла выполняется условие — все левые потомки имеют ключи, меньшие, чем ключ узла, а правые — большие (возможно равные).