
- •Введение
- •Основные понятия и определения
- •Типы данных
- •1.1.1. Понятие типа данных
- •1.2.2. Внутреннее представление базовых типов в оперативной памяти
- •1.2.2. Внутреннее представление структурированных типов данных
- •1.2.3. Статическое и динамическое выделение памяти
- •Абстрактные типы данных (атд)
- •Понятие атд
- •1.2.2. Спецификация и реализация атд
- •Структуры данных
- •1.3.1. Понятие структуры данных
- •1.3.2. Структуры хранения — непрерывная и ссылочная
- •1.4.3. Классификация структур данных
- •Алгоритмы
- •1.4.1. Понятие алгоритма
- •1.4.2. Способы записи алгоритмов.
- •1.4.3. Введение в анализ алгоритмов Вычислительные модели
- •Задача анализа алгоритмов
- •Время работы алгоритма
- •Время выполнения в худшем и среднем случае
- •1.4.3. Введение в рекурсию
- •Первые примеры
- •1.5.1. Введение в «длинную» арифметику
- •1.5.2. Рекурсия
- •1.5.3. Поразрядные операции. Реализация атд «Множество»
- •2. Линейные структуры данных
- •2.1. Атд "Стек", "Очередь", "Дек"
- •2.2. Реализация стеков
- •2.2.1. Непрерывная реализация стека с помощью массива
- •2.2.2. Ссылочная реализация стека в динамической памяти
- •2.2.3. Примеры программ с использованием стеков
- •2.3. Реализация очередей
- •2.3.2. Непрерывная реализация очереди с помощью массива
- •2.3.2. Ссылочная реализация очереди в динамической памяти
- •2.3.3. Ссылочная реализация очереди с помощью циклического списка
- •2.3.4. Очереди с приоритетами
- •2.3.5. Пример программы с использованием очереди
- •2.4. Списки как абстрактные типы данных
- •2.4.1. Модель списка с выделенным текущим элементом
- •2.4.2. Однонаправленный список (список л1)
- •2.4.3. Двунаправленный список (список л2)
- •2.4.4. Циклический (кольцевой) список
- •2.5. Реализация списков с выделенным текущим элементом
- •2.5.1. Однонаправленные списки Ссылочная реализация в динамической памяти на основе указателей
- •2.5.2. Двусвязные списки
- •2.5.3. Кольцевые списки
- •2.5.4. Примеры программ, использующих списки Очередь с приоритетами на основе линейного списка
- •Задача Иосифа (удаление из кольцевого списка)
- •2.6. Рекурсивная обработка линейных списков
- •2.6.1. Модель списка при рекурсивном подходе
- •2.6.2. Реализация линейного списка при рекурсивном подходе
- •3. Иерархические структуры данных
- •3.1. Иерархические списки
- •3.1.1 Иерархические списки как атд
- •3.1.2. Реализация иерархических списков
- •3.2. Деревья и леса
- •3.2.1. Определения
- •3.2. Способы представления деревьев
- •3.2.3. Терминология деревьев
- •3.2.4. Упорядоченные деревья и леса. Связь с иерархическими списками
- •3.3. Бинарные деревья
- •3.3.1. Определение. Представления бинарных деревьев
- •3.3.2. Математические свойства бинарных деревьев
- •3.4. Соответствие между упорядоченным лесом и бинарным деревом
- •3.5. Бинарные деревья как атд
- •3.6. Ссылочная реализация бинарных деревьев
- •3.6.1. Ссылочная реализация бинарного дерева на основе указателей
- •3.6.2. Ссылочная реализация на основе массива
- •3.6.3. Пример — построение дерева турнира
- •3.7. Обходы бинарных деревьев и леса
- •3.7.1. Понятие обхода. Виды обходов
- •3.7.2. Рекурсивные функции обхода бинарных деревьев
- •3.7.3. Нерекурсивные функции обхода бинарных деревьев
- •3.7.4. Обходы леса
- •3.7.5. Прошитые деревья
- •3.8. Применения деревьев
- •3.8.1. Дерево-формула
- •3.8.2. Задача сжатия информации. Коды Хаффмана
- •4. Сортировка и родственные задачи
- •4.1. Общие сведения
- •4.1.1. Постановка задачи
- •4.1.2. Характеристики и классификация алгоритмов сортировки
- •4.2. Простые методы сортировки
- •4.2.1. Сортировка выбором
- •4.2.2. Сортировка алгоритмом пузырька
- •4.2.3.Сортировка простыми вставками.
- •4.3. Быстрые способы сортировки, основанные на сравнении
- •4.3.1. Сортировка упорядоченным бинарным деревом
- •Анализ алгоритма сортировки бинарным деревом поиска
- •4.3.2. Пирамидальная сортировка
- •Первая фаза сортировки пирамидой
- •Вторая фаза сортировки пирамидой
- •Анализ алгоритма сортировки пирамидой
- •Реализация очереди с приоритетами на базе пирамиды
- •4.3.2. Сортировка слиянием
- •Анализ алгоритма сортировки слиянием
- •4.3.3. Быстрая сортировка Хоара
- •Анализ алгоритма быстрой сортировки
- •4.3.4. Сортировка Шелла
- •4.3.5. Нижняя оценка для алгоритмов сортировки, основанных на сравнениях
- •4.4. Сортировка за линейное время
- •4.4.1. Сортировка подсчетом
- •4.4.2. Распределяющая сортировка от младшего разряда к старшему
- •4.4.3. Распределяющая сортировка от старшего разряда к младшему
- •5. Структуры и алгоритмы для поиска данных
- •5.1. Общие сведения
- •5.1.1. Постановка задачи поиска
- •5.1.2. Структуры для поддержки поиска
- •5.1.3. Соглашения по программному интерфейсу
- •5.2. Последовательный (линейный) поиск
- •5.3. Бинарный поиск в упорядоченном массиве
- •5.4. Бинарные деревья поиска
- •5.4.1. Анализ алгоритмов поиска, вставки и удаления Поиск
- •Вставка
- •Удаление
- •5.4.3. Реализация бинарного дерева поиска
- •5.5. Сбалансированные деревья
- •Определение и свойства авл-деревьев
- •Вращения
- •Алгоритмы вставки и удаления
- •Реализация рекурсивного алгоритма вставки в авл-дерево
- •5.5.2. Сильноветвящиеся деревья
- •Бинарные представления сильноветвящихся деревьев
- •5.5.3. Рандомизированные деревья поиска
- •5.6. Структуры данных, основанные на хеш-таблицах
- •5.6.2. Выбор хеш-функций и оценка их эффективности
- •Модульное хеширование (метод деления)
- •Мультипликативный метод
- •Метод середины квадрата
- •5.6.2. Метод цепочек
- •5.6.3. Хеширование с открытой адресацией
- •5.6.4. Пример решения задачи поиска с использованием хеш-таблицы
3.7. Обходы бинарных деревьев и леса
3.7.1. Понятие обхода. Виды обходов
Многие алгоритмы работы с бинарными деревьями основаны на последовательной обработке узлов дерева. Если для линейного списка последовательность обработки элементов очевидна (в однонаправленных списках только в прямом, в двунаправленных — в прямом и обратном направлении), то в бинарном дереве имеется гораздо больше возможностей из-зи наличия ветвления. В связи с этим вводится понятие обхода дерева. При обходе дерева каждый узел посещается только один раз, при этом узлы выстраиваются в определённую линейную последовательность узлов, т.е. можно говорить о предыдущем и следующем узле.
Понятие обхода вводится для любых деревьев, однако удобнее начать с обхода бинарных деревьев ввиду простоты и универсальности.
Наиболее известны и практически важны 3 способа прохождения, которые отличаются порядком и направлением обхода бинарного дерева. К сожалению, в литературе встречается довольно много различных названий для данных обходов, что порождает некоторую путаницу. В таблице 3.4 приведены основные названия (верхняя строка) и алгоритмы рекурсивного прохождения узлов дерева для каждого способа (нижняя строка).
Таблица 3.4.
Рекурсивное прохождение бинарного дерева.
Прямой порядок,
сверху вниз (в глубину), нисходящий, Preorder (префиксный) |
слева направо, поперечный,
|
Концевой порядок, обратный, снизу вверх, восходящий Postorder(постфиксный) |
Алгоритм КЛП (корень-левое-правое), 1. Попасть в корень 2. Пройти левое поддерево 3. Пройти правое поддерево |
Алгоритм ЛКП (левое-корень-правое) 1. Пройти левое поддерево 2. Попасть в корень 3. Пройти правое поддерево |
Алгоритм ЛПК (левое-правое-корень) 1. Пройти левое поддерево 2. Пройти правое поддерево 3. Попасть в корень |
Прямой порядок прохождения означает обход в направлении сверху-вниз, когда после посещения очередного разветвления продолжается прохождение вглубь дерева, пока не пройдены все потомки достигнутого узла. По этой причине прямой порядок прохождения часто называют нисходящим, или прохождением в глубину. Прямой порядок используется в представлении дерева в форме вложенных скобок (левое скобочное представление), в виде уступчатого списка или десятичной классификации Дьюи. В геналогических терминах прямой порядок прохождения дерева отражает династический порядок престолонаследования, когда титул передается старшему потомку.
При центрированном (симметричном) проядке дерево проходится слева направо. Такой порядок используется, например, при обходе бинарного дерева поиска, порождая упорядоченную последовательность значений. Подробнее об этом будет рассказано в главах, посвященных сортировке и поиску.
Если применяется концевой порядок прохождения, то получается обход дерева снизу-вверх, когда в момент посещения любого узла все его потомки уже пройдены, а корень дерева проходится последним. Из-за этой особенности обхода, концевой порядок называют восходящим, или обратным относительно прямого.
Иногда используется еще один способ обхода бинарного дерева обход в горизонтальном порядке (в ширину). При таком способе узлы бинарного дерева проходятся слева направо, уровень за уровнем от корня вниз (поколение за поколением от старших к младшим).
Таблица 3.5.
Прохождение узлов дерева при различных порядках обхода
|
Порядок обхода |
Очередность обработки узлов |
1. Прямой |
a b d e g c f |
|
2. Центрированный |
d b g e a c f |
|
3. Обратный (концевой) |
d g e b f c a |
|
4. В ширину |
a b c d e f g |
Например, построенное ранее бинарное дерево, изображеннное на рис. 3.10 (для удобства мы его перерисуем снова) можно обойти различными способами так, как показано в табл.3.5
Рассмотрим реализацию данных методов на С++, используя ссылочное представление дерева на основе указателей (листинг 3.2). Предположим, что мы имеем указатель на корень бинарного дерева.