
- •Физиология растений
- •Учебное издание
- •Isbn 5-06-001604-8
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 11
- •Глава 12
- •Устойчивость растений к низким температурам 14.5. 14.6. 14.7.
- •Глава 14
- •Строение растительной клетки
- •(Лецитин и др.) субъединица белок фермента
- •Структуры растительных клеток
- •Органы, ткани, функциональные системы высших растений
- •Отложение в запас
- •Глава 2
- •Канализированная связь
- •Гормональная регуляция
- •Генетическая система регуляции
- •18S 5,8s 28s Интрон
- •Электрофизиологическая регуляция
- •2.6. Электрофизиологическая регуляция
- •Электротонические поля и токи • растительном организме
- •Потенциал действия (пд)
- •3.1. Общее уравнение фотосинтезв
- •1 А хлорофилл ° 1/l ° *
- •I "'хЛОрОфИлл
- •3.1. Общее уравнение фотосинтеза
- •Пигменты пластид
- •Триплетное возбужденное состояние
- •Синглетное возбужденное состояние
- •Фотосистема II
- •Путь углероде в фотосинтезе (темновая фаза фотосинтеза)
- •Iifpokchcoma
- •Регуляция фотосинтеза на уровне листа
- •Механические ткани
- •2Хема клеточного строения листа дву-юльных
- •I tier
- •Регуляция процессов фотосинтеза в целом растении
- •Синтез гормонов в тканях стеблей, корней, плодов нт. Д.
- •3.6. Экология фотосинтеза
- •3.6. Экология фотосинтеза
- •Фотосинтез, рост 4 продуктивность растений
- •Космическая роль растений
- •Сопряженная эволюция типов обмена веществ и среды обитания
- •Общее уравнение дыхания
- •4.1. Общее уравнение дыхания
- •4.1. Общее уравнение дыхания
- •Снон—соон изолимонная кислота
- •Взаимосвязь различных путей диссимиляции глюкозы
- •Дыхательная электронтранспортная цепь и окислительное фосфорилирование
- •Альтернативная оксидаза
- •Сукцинил--СоА
- •Световые реакции фотосинтеза
- •Возраст листьев, дни
- •И свойства чистой воды
- •3,I чонсr fiHa ci к'„ 'I
- •5.4. Механизмы лередвижении воды по растению
- •5.4. Механизмы передвижения врды_по_растению
- •I Мир растений 1
- •Растения
- •Процессы y растений
- •Пути ассимиляции аммиака
- •Глутаминовая кислота
- •Аепарапшовая кислот а
- •Неорганический низкомолекулярныи высокомолекулярный
- •_ Трансфераза _
- •Механизмы поглощения ионов растительной клеткой
- •Радиальный и ксилемный транспорт элементов минерального питания
- •Влияние внешних и внутренних факторов на минеральное питание растений
- •Активность и минеральный состав растений
- •6 12. Экология минерального питания
- •Ние рН на доступ-минеральных ;нтов для расте-(по с. J. Pratt,
- •7,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 Очень кислые Слабо кислые
- •6.12. Экология минерального питания __ 273
- •Voop -bop
- •Питание насекомоядных растений
- •За счет собственных органических веществ
- •Глава 8
- •Глава 9
- •Функционирование специализированных секреторных структур у растений
- •Глава 10
- •Структура и синтез рнк
- •Структура и синтез белков
- •К&трилцрякии шсгимл.
- •10.2. Самосборка и биогенез клеточных структур
- •10.2. Самосборка и биогенез клеточных структур
- •1Ема фаз митоза I. С. Ledbetter, к. R. Irter, 1970)
- •Этапы онтогенеза высших растений
- •Протодерма
- •Концентрации, мг/л
- •Влияние факторов 1нешней среды на рост растений
- •Физиология размножения растений
- •Использование вегетативного размножения в растениеводстве
- •Глава 13
- •13.2. Внутриклеточные движения
- •IV. Ростовые движения (удлинение осевых органов, кру- говые нутации, тропизмы: фото-, гео-, тигмо-, хемо-, термо- и т. Д., ростовые настии: фото-, термо-, гигро-).
- •V. Тургорные движения (движения устьиц, медленные тур- горные движения — настии, быстрые тургорные движения — сейсмонастии).
- •Локомоторный способ движения у жгутиковых
- •13.3.1 Таксисы
- •13.5. Ростовые движения
- •Медленные тургорные настические движения
- •Быстрые тургорные движения (сейсмоностии)
- •Глава 14 механизмы защиты и устойчивости у растений
- •Способы защиты и надежность растительных организмов
- •Засухоустойчивость и устойчивость к перегреву
- •Устойчивость к недостатку кислорода
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
3.6. Экология фотосинтеза
115
рушается
структура гран, устьица слабо открываются
на свету и недостаточно закрываются в
темноте, ухудшается водный режим
листа, нарушаются все процессы
фотосинтеза. Это свидетельствует о
полифункциональной роли калия в ионной
регуляции фотосинтеза.
Кислород. Процесс фотосинтеза обычно осуществляется в аэробных условиях при концентрации кислорода 21 %. Увеличение содержания или отсутствие кислорода для фотосинтеза неблагоприятны.
Обычная концентрация 02 превышает оптимальную для фотосинтеза величину. У растений с высоким уровнем фотодыхания (бобы и др.) уменьшение концентрации кислорода с 21 до 3% усиливало фотосинтез, а у растений кукурузы (с низким уровнем фотодыхания) такого рода изменение не влияло на интенсивность фотосинтеза.
Высокие концентрации 02 (25 — 30%) снижают фотосинтез («эффект Варбурга»). Предложены следующие объяснения этого явления. Повышение парциального давления 02 и уменьшение концентрации С02 активируют фотодыхание (см. 3.4.4). Кислород непосредственно снижает активность РДФ-карбокси-лазы. Наконец, 02 может окислять первичные восстановленные продукты фотосинтеза. —— Суточные и сезонные ритмы фотосинтеза. Исследования фотосинтеза растений естественных наземных экосистем были начаты в первой четверти XX в. работами В. Н. Лю-бименко, С. П. Костычева и др. Факторы внешней среды, рассмотренные ранее, действуют совместно и в различных сочетаниях. Однако реЩающую роль играют свет, температура и водный режим.
С восходом солнца интенсивность фотосинтеза возрастает вместе с освещенностью, достигая максимальных значений в 9—12 ч (рис. 3.28). Дальнейший характер процесса определяется степенью оводненности листьев, температурой воздуха и интенсивностью солнечного света. В полуденные часы интенсивность фотосинтеза не увеличивается: она может оставаться примерно на уровне утреннего максимума (в нежаркие, облачные дни) или несколько снижаться, но тогда к 16—17 ч наблюдается повторное усиление процесса. Интенсивность фотосинтеза падает после 22 ч с заходом солнца.
Фотосинтез, рост 4 продуктивность растений
3.6.2
Дневная депрессия фотосинтеза (если имеет место) связана с нарушениями в деятельности фотосинтетического аппарата и оттока ассимилятов при перегреве, поскольку температура листьев в этот период может превышать температуру воздуха на 5—10 °С. Если потери воды тканями велики и наблюдается усиление фотодыхания, то устьица в это время закрываются.
Сезонные изменения фотосинтеза, изученные О. В. Заленским у растений пустынь и в условиях Арктики, показали, что у пустынных растений они зависят от особенностей онтогенеза, а у эфемеров с коротким вегетационным периодом максимальные интенсивности фотосинтеза наблюдаются в конце марта — середине апреля и совпадают с началом плодоношения. У растений, заканчивающих активную вегетацию в начале лета, сезонный максимум фотосинтеза отмечается перед наступлением летнего покоя. У длительно вегетирующих деревьев и кустарников сезонный максимум регистрируется в самом начале жаркого и сухого периода. К осени интенсивность фотосинтеза постепенно снижается. У арктических растений сезонные изменения фотосинтеза проявляются в снижении его интенсивности в начале и в конце периода вегетации, когда растения часто подвержены действию заморозков. Максимум фотосинтеза отмечается в наиболее благоприятный период полярного лета.
Взаимоотношения роста растений и интенсивности фотосинтеза отражают непрерывную перестройку фотосинтетического аппарата в ходе онтогенеза и динамику формирования и активности растущих (аттрагирующих) органов, потребляющих ассимиляты. Начальный этап развития листа осуществляется за счет деления и роста клеток, а затем — лишь путем растяжения. За это время делятся и развиваются хлоропласты, число которых увеличивается, пока растет объем клетки. В клетках губчатой ткани пластид образуется в 1,5 — 2,0 раза меньше (у картофеля около 70), чем в палисадной (200 — 300 органоидов). Новообразование хлоропластов завершается довольно рано, но рост клеток опережает увеличение числа хлоропластов, в результате чего в онтогенезе листа их количество в 1 см2 убывает вдвое. Однако содержание хлорофилла в хлоропласте продолжает увеличиваться и после достижения хлоропластом наибольшей величины. Максимальная интенсивность фотосинтеза наблюдается во время роста клеток листа растяжением и начинает несколько снижаться, когда площадь листа составляет 0,4 — 0,8 от конечной. Затем процесс фотосинтеза может уменьшаться с возрастом листа или не меняется длительное время (особенно у вечнозеленых растений).
На ранних этапах роста (до развертывания 30 — 45% площади) лист сам потребляет ассимиляты из более зрелых листьев или из запасающих тканей. По мере роста листа усиливается транспорт ассимилятов из него в другие листья и органы и постепенно лист становится донором ассимилятов. Эта функция устанавливается при достижении 60 — 90% конеч-
3.7
Значение %: зеленых % растений для биосферы
3.7.1
^^^^^^^^^^^^^