
- •Министерство образования и науки российской федерации
- •Механика
- •Содержание
- •Предисловие
- •Программа курса “Механика”
- •Место дисциплины в учебном процессе и виды учебной работы
- •Распределение учебных часов
- •Учебно-тематический план
- •Содержание курса
- •Примерная тематика семинарских занятий
- •Вычислительный эксперимент
- •Средства обеспечения дисциплины
- •Рекомендуемая литература
- •Лекция №1. Введение
- •1. Предмет физики, её связь с другими естественными науками
- •2. Методы физических исследований
- •3. Роль модельных представлений в физике
- •4. Физические величины, их измерение и оценка точности и достоверности полученных результатов
- •5. Системы единиц физических величин
- •Контрольные вопросы
- •Лекция №2. Кинематика материальной точки при прямолинейном движении
- •1. Кинематические законы движения материальной точки
- •Зависимость (2.3)
- •2. Скорость и ускорение при прямолинейном движении
- •Контрольные вопросы
- •Лекция №3. Кинематика материальной точки при криволинейном движении
- •1. Скорость материальной точки при криволинейном движении
- •2. Ускорение материальной точки при криволинейном движении
- •3.Ускорение при движении материальной точки по окружности
- •4. Кинематика вращательного движения материальной точки
- •Контрольные вопросы
- •Лекция №4. Динамика материальной точки
- •1. Первый закон Ньютона
- •2. Масса
- •3. Сила
- •4. Второй закон Ньютона
- •5. Третий закон Ньютона
- •6. Импульс. Общая формулировка второго закона Ньютона
- •7. Виды взаимодействий тел
- •8. Гравитационные силы (силы тяготения)
- •9. Сила тяжести и вес. Невесомость
- •10. Силы трения
- •Контрольные вопросы
- •Лекция №5. Динамика системы материальных точек
- •1. Центр масс системы материальных точек
- •2. Закон сохранения импульса
- •Движение каждой точки описывается вторым законом Ньютона:
- •3. Движение тел с переменной массой. Реактивное движение
- •4. Задача двух тел. Приведенная масса
- •Контрольные вопросы
- •Лекция №6. Законы сохранения
- •1. Работа
- •2. Энергия и работа
- •3. Кинетическая энергия и работа
- •4. Потенциальная энергия
- •5. Закон сохранения и превращения механической энергии
- •6. Соударение двух тел
- •7. Момент силы относительно неподвижного центра
- •8. Момент импульса относительно неподвижного центра
- •9. Закон сохранения момента импульса
- •10. Законы сохранения и симметрия пространства и времени
- •Контрольные вопросы
- •Лекция №7. Механика твердого тела
- •1. Понятие об абсолютно твердом теле
- •2. Твердое тело как система материальных точек
- •3. Поступательное движение твердого тела
- •4. Вращательное движение твердого тела
- •5. Плоское движение твердого тела
- •6. Момент силы относительно оси
- •7. Момент пары сил
- •8. Второй закон Ньютона для вращающегося твердого тела
- •9. Момент инерции твердого тела
- •10. Теорема Штейнера
- •11. Закон сохранения момента импульса при вращательном движении
- •12. Кинетическая энергия вращающегося тела
- •13. Кинетическая энергия тела при плоском движении
- •14. Свободные оси вращения
- •15. Гироскоп
- •16. Степени свободы и связи абсолютно твердого тела
- •17. Условия равновесия твердого тела. Виды равновесия
- •18. Центр тяжести
- •Контрольные вопросы
- •Лекция №8. Механика деформируемых тел
- •1. Упругие силы
- •2. Виды упругих деформаций
- •3. Упругие и пластические деформации. Предел упругости и предел прочности
- •4. Всестороннее растяжение и сжатие
- •5. Энергия упругой деформации
- •Потенциальная энергия упруго деформированного стержня равна
- •6. Кручение
- •Контрольные вопросы
- •Лекция №9. Механика жидкостей и газов
- •1. Механические свойства жидкостей и газов
- •2. Гидростатика
- •Кажущийся вес тела
- •3.Гидродинамика
- •4. Описание движения жидкостей. Уравнение неразрывности струи
- •5. Уравнение Бернулли
- •6. Вязкость
- •7. Ламинарное и турбулентное течения
- •8. Течение вязкой жидкости в круглой трубе. Формула Пуазейля
- •9. Движение тел в жидкостях и газах. Закон Стокса
- •10. Истечение жидкости из отверстия
- •Контрольные вопросы
- •Лекция №10. Движение в неинерциальных системах отсчета
- •1. Неинерциальные системы отсчета
- •2. Силы инерции
- •3. Силы инерции при ускоренном поступательном движении системы отсчета
- •123 4. Силы инерции при равномерном вращательном движении системы отсчета. Центробежная сила инерции
- •5. Сила Кориолиса
- •Контрольные вопросы
- •Лекция №11. Механические колебания и волны
- •1. Гармонические колебания и их характеристики
- •2. Динамика колебательного движения
- •3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5. Сложение взаимно перпендикулярных колебаний
- •6. Свободные затухающие колебания
- •7. Вынужденные колебания
- •8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •9. Автоколебания
- •10. Распространение колебаний в однородной упругой среде
- •11. Уравнение плоской и сферической бегущей волны. Фазовая скорость. Волновое уравнение
- •12. Принцип суперпозиции. Групповая скорость
- •13. Энергия упругой волны
- •14. Интерференция волн
- •15. Стоячие волны
- •16. Характеристика звуковых волн
- •17. Эффект Доплера в акустике
- •18. Ультразвук и eго применение
- •Контрольные вопросы
- •Лекция №12. Всемирное тяготение
- •1. Законы Кеплера и закон всемирного тяготения
- •2. Гравитационная масса
- •3. Поле тяготения и его напряженность
- •4. Работа в поле тяготения. Потенциал поля тяготения
- •5. Космические скорости
- •6. Принцип эквивалентности гравитационных сил и сил инерции
- •Контрольные вопросы
- •Лекция № 13. Элементы специальной теории относительности
- •1. Преобразования Галилея. Механический принцип относительности
- •2. Постулаты специальной (частной) теории относительности
- •3. Преобразования Лоренца
- •4. Следствия из преобразований Лоренца
- •5. Интервал между событиями
- •6. Основной закон релятивистской динамики материальной точки
- •7. Взаимосвязь массы и энергии
- •Контрольные вопросы
- •Фатыхов Миннехан Абузарович Механика
5. Интервал между событиями
Преобразования
Лоренца и следствия из них приводят к
выводу об относительности длин и
промежутков времени, значение которых
в различных системах отсчета разное. В
то же время относительный характер длин
и промежутков времени в теории Эйнштейна
означает относительность отдельных
компонентов какой-то
реальной
физической величины, не зависящей от
системы отсчета, т.е. являющейся
инвариантной
по отношению
к преобразованиям координат. В
четырехмерном пространстве Эйнштейна,
в котором каждое событие характеризуется
четырьмя координатами
,
такой физической величиной является
интервал между двумя событиями:
,
(13.15)
где
– расстояние
между точками обычного трехмерного
пространства, в которых эти события
произошли. Введя обозначение
,
,
покажем,
что интервал между двумя событиями
одинаков во всех инерциальных системах
отсчета. Обозначив
,
,
,
,
выражение (13.15) можно записать в виде
.
Интервал между теми же событиями в системе К' равен
(13.16)
Согласно преобразованиям Лоренца (13.8),
.
Подставив
эти значения в (13.16), после элементарных
преобразований получим, что
,
т.е.
.
Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета.
Теория относительности, таким образом, сформулировала новое представление о пространстве и времени, обобщенное далее в диалектическом материализме. Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея-Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи – пространство-время. Пространство и время не существуют вне материи и независимо от нее.
Дальнейшее развитие теории относительности (общая теория относительности, или теория тяготения) показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени не является евклидовой (т.е. не зависящей от размеров области пространства-времени), а изменяется от одной области к другой в зависимости от концентрации масс в этих областях и их движения.
6. Основной закон релятивистской динамики материальной точки
Согласно представлениям классической механики, масса тела есть величина постоянная. Однако в конце XIX столетия на опытах с быстро движущимися электронами было установлено, что масса тела зависит от скорости его движения, а именно возрастает с увеличением скорости по закону
, (13.17)
где
– масса покоя материальной
точки, т.е. масса, измеренная в той
инерциальной системе отсчета, относительно
которой материальная точка находится
в покое; с
–
скорость света в вакууме; т
–
масса точки в системе отсчета, относительно
которой она движется со скоростью и.
Из
принципа относительности Эйнштейна,
утверждающего инвариантность всех
законов природы при переходе от одной
инерциальной системы отсчета к другой,
следует условие инвариантности уравнений
физических законов относительно
преобразований Лоренца. Основной закон
динамики Ньютона
оказывается
также инвариантным по отношению к
преобразованиям Лоренца, если в нем
справа стоит производная по времени от
релятивистского импульса.
Основной закон релятивистской динамики материальной точки имеет вид
(13.18)
или
(13.19)
где
)
(13.20)
– релятивистский импульс материальной точки.
Отметим, что уравнение (13.20) внешне совпадает с основным уравнением ньютоновской механики. Однако физический смысл его другой: справа стоит производная по времени от релятивистского импульса, определяемого формулой (13.20). Таким образом, уравнение (13.20) инвариантно по отношению к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Следует учитывать, что ни импульс, ни сила не являются инвариантными величинами. Более того, в общем случае ускорение не совпадает по направлению с силой.
В силу однородности пространства в релятивистской механике выполняется закон сохранения релятивистского импульса: релятивистский импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выражение для импульса.
Анализ
формул (13.17) – (13.19) показывает, что при
скоростях, значительно меньших скорости
света, уравнение (13.20) переходит в основной
закон классической механики. Следовательно,
условием применимости законов классической
(ньютоновской) механики является условие
v<<c.
Законы
классической механики получаются как
следствие теории относительности для
предельного случая v<<c
(формально
переход осуществляется при
).
Таким образом, классическая
механика –
это
механика макротел, движущихся с малыми
скоростями (по
сравнению со скоростью света в вакууме).
Экспериментальное доказательство зависимости массы от скорости (13.20) является подтверждением справедливости специальной теории относительности.