
- •Министерство образования и науки российской федерации
- •Механика
- •Содержание
- •Предисловие
- •Программа курса “Механика”
- •Место дисциплины в учебном процессе и виды учебной работы
- •Распределение учебных часов
- •Учебно-тематический план
- •Содержание курса
- •Примерная тематика семинарских занятий
- •Вычислительный эксперимент
- •Средства обеспечения дисциплины
- •Рекомендуемая литература
- •Лекция №1. Введение
- •1. Предмет физики, её связь с другими естественными науками
- •2. Методы физических исследований
- •3. Роль модельных представлений в физике
- •4. Физические величины, их измерение и оценка точности и достоверности полученных результатов
- •5. Системы единиц физических величин
- •Контрольные вопросы
- •Лекция №2. Кинематика материальной точки при прямолинейном движении
- •1. Кинематические законы движения материальной точки
- •Зависимость (2.3)
- •2. Скорость и ускорение при прямолинейном движении
- •Контрольные вопросы
- •Лекция №3. Кинематика материальной точки при криволинейном движении
- •1. Скорость материальной точки при криволинейном движении
- •2. Ускорение материальной точки при криволинейном движении
- •3.Ускорение при движении материальной точки по окружности
- •4. Кинематика вращательного движения материальной точки
- •Контрольные вопросы
- •Лекция №4. Динамика материальной точки
- •1. Первый закон Ньютона
- •2. Масса
- •3. Сила
- •4. Второй закон Ньютона
- •5. Третий закон Ньютона
- •6. Импульс. Общая формулировка второго закона Ньютона
- •7. Виды взаимодействий тел
- •8. Гравитационные силы (силы тяготения)
- •9. Сила тяжести и вес. Невесомость
- •10. Силы трения
- •Контрольные вопросы
- •Лекция №5. Динамика системы материальных точек
- •1. Центр масс системы материальных точек
- •2. Закон сохранения импульса
- •Движение каждой точки описывается вторым законом Ньютона:
- •3. Движение тел с переменной массой. Реактивное движение
- •4. Задача двух тел. Приведенная масса
- •Контрольные вопросы
- •Лекция №6. Законы сохранения
- •1. Работа
- •2. Энергия и работа
- •3. Кинетическая энергия и работа
- •4. Потенциальная энергия
- •5. Закон сохранения и превращения механической энергии
- •6. Соударение двух тел
- •7. Момент силы относительно неподвижного центра
- •8. Момент импульса относительно неподвижного центра
- •9. Закон сохранения момента импульса
- •10. Законы сохранения и симметрия пространства и времени
- •Контрольные вопросы
- •Лекция №7. Механика твердого тела
- •1. Понятие об абсолютно твердом теле
- •2. Твердое тело как система материальных точек
- •3. Поступательное движение твердого тела
- •4. Вращательное движение твердого тела
- •5. Плоское движение твердого тела
- •6. Момент силы относительно оси
- •7. Момент пары сил
- •8. Второй закон Ньютона для вращающегося твердого тела
- •9. Момент инерции твердого тела
- •10. Теорема Штейнера
- •11. Закон сохранения момента импульса при вращательном движении
- •12. Кинетическая энергия вращающегося тела
- •13. Кинетическая энергия тела при плоском движении
- •14. Свободные оси вращения
- •15. Гироскоп
- •16. Степени свободы и связи абсолютно твердого тела
- •17. Условия равновесия твердого тела. Виды равновесия
- •18. Центр тяжести
- •Контрольные вопросы
- •Лекция №8. Механика деформируемых тел
- •1. Упругие силы
- •2. Виды упругих деформаций
- •3. Упругие и пластические деформации. Предел упругости и предел прочности
- •4. Всестороннее растяжение и сжатие
- •5. Энергия упругой деформации
- •Потенциальная энергия упруго деформированного стержня равна
- •6. Кручение
- •Контрольные вопросы
- •Лекция №9. Механика жидкостей и газов
- •1. Механические свойства жидкостей и газов
- •2. Гидростатика
- •Кажущийся вес тела
- •3.Гидродинамика
- •4. Описание движения жидкостей. Уравнение неразрывности струи
- •5. Уравнение Бернулли
- •6. Вязкость
- •7. Ламинарное и турбулентное течения
- •8. Течение вязкой жидкости в круглой трубе. Формула Пуазейля
- •9. Движение тел в жидкостях и газах. Закон Стокса
- •10. Истечение жидкости из отверстия
- •Контрольные вопросы
- •Лекция №10. Движение в неинерциальных системах отсчета
- •1. Неинерциальные системы отсчета
- •2. Силы инерции
- •3. Силы инерции при ускоренном поступательном движении системы отсчета
- •123 4. Силы инерции при равномерном вращательном движении системы отсчета. Центробежная сила инерции
- •5. Сила Кориолиса
- •Контрольные вопросы
- •Лекция №11. Механические колебания и волны
- •1. Гармонические колебания и их характеристики
- •2. Динамика колебательного движения
- •3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5. Сложение взаимно перпендикулярных колебаний
- •6. Свободные затухающие колебания
- •7. Вынужденные колебания
- •8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •9. Автоколебания
- •10. Распространение колебаний в однородной упругой среде
- •11. Уравнение плоской и сферической бегущей волны. Фазовая скорость. Волновое уравнение
- •12. Принцип суперпозиции. Групповая скорость
- •13. Энергия упругой волны
- •14. Интерференция волн
- •15. Стоячие волны
- •16. Характеристика звуковых волн
- •17. Эффект Доплера в акустике
- •18. Ультразвук и eго применение
- •Контрольные вопросы
- •Лекция №12. Всемирное тяготение
- •1. Законы Кеплера и закон всемирного тяготения
- •2. Гравитационная масса
- •3. Поле тяготения и его напряженность
- •4. Работа в поле тяготения. Потенциал поля тяготения
- •5. Космические скорости
- •6. Принцип эквивалентности гравитационных сил и сил инерции
- •Контрольные вопросы
- •Лекция № 13. Элементы специальной теории относительности
- •1. Преобразования Галилея. Механический принцип относительности
- •2. Постулаты специальной (частной) теории относительности
- •3. Преобразования Лоренца
- •4. Следствия из преобразований Лоренца
- •5. Интервал между событиями
- •6. Основной закон релятивистской динамики материальной точки
- •7. Взаимосвязь массы и энергии
- •Контрольные вопросы
- •Фатыхов Миннехан Абузарович Механика
17. Условия равновесия твердого тела. Виды равновесия
Как было указано в предыдущем разделе, твердое тело является механической системой с шестью степенями свободы. Для описания его движения требуется шесть независимых числовых уравнений. Вместо них можно взять два независимых векторных уравнения. Таковыми являются уравнение движения центра масс
(7.38)
и уравнение моментов
(7.39)
Если твердое тело покоится, то уравнения (7.38) и (7.39) переходят в уравнения
(7.40)
(7.41)
В
этих формулах
–
результирующая внешних сил,
– сумма моментов этих сил относительно
оси вращения. Таким
образом, равновесие имеет место в том
случае, когда результирующая внешних
сил и сумма моментов относительно оси
вращения равны нулю.
Это
– необходимые условия равновесия
твердого тела. Но они не являются
достаточными. При их выполнении центр
масс может еще двигаться прямолинейно
и равномерно с произвольной скоростью,
а само тело может вращаться с сохранением
вращательного импульса. Так как при
равновесии
равна
нулю, то момент этих сил
в состоянии равновесия не зависит от
положения неподвижного начала О,
относительно которого он берется.
Поэтому при решении любой задачи на
равновесие твердого тела начало О можно
выбирать произвольно.
Различают устойчивое и неустойчивое равновесия. Как показывает связь силы с потенциальной энергией, при равенстве нулю результирующих внешних сил в состоянии равновесия все производные потенциальной энергии по координатам должны обращаться в нуль. Отсюда следует, что для равновесия необходимо, чтобы потенциальная энергия была стационарна. Стационарность означает, что при всяком выводе системы из состояния равновесия, когда координаты материальных точек получают бесконечно малые приращения, функция потенциальной энергии остается почти постоянной. Точнее, приращения потенциальной функции при таких приращениях координат являются бесконечно малыми более высокого порядка, чем приращения самих координат. В частности, система будет находиться в равновесии, если потенциальная энергия экстремальна, т.е. минимальна или максимальна.
Если потенциальная энергия минимальна, то равновесие будет устойчивым. Диссипативные силы делают равновесие еще более устойчивым. Если потенциальная энергия максимальна, равновесие тела неустойчиво.
Эти выводы остаются справедливыми и для систем, свобода перемещения которых ограничена наложенными связями. Надо только потребовать, чтобы связи были идеальными, т.е. такими, которые не производят работы при любых возможных перемещениях системы. Примером может служить идеально гладкий шарик, надетый на идеально твердую и гладкую спицу, которая задает направление возможного перемещения шарика. Сила, действующая на шарик со стороны спицы, перпендикулярна направлению возможного перемещения и работы не производит.
18. Центр тяжести
На каждую точку частицы твердого тела действует сила тяготения Земли. Все силы тяготения параллельны друг другу, если размеры тела невелики относительно радиуса Земли, и имеют равнодействующую. Оказывается, как бы ни повернули твердое тело, эта равнодействующая будет проходить через одну точку, неизменно связанную с телом. Эта точка называется центром тяжести тела.
Если укрепить тело в точке центра тяжести, то оно будет находиться в равновесии при любом положении тела. Следовательно, сумма моментов сил тяжести всех частиц тела относительно любой горизонтальной оси, проходящей через центр тяжести, равна нулю. Подвешенное так тело после поворота вокруг любой оси, проходящей через центр тяжести, будет оставаться в равновесии, так как равнодействующая сил тяжести проходит через точку закрепления.
Центр масс твердого тела совпадает с его центром тяжести. Поэтому вместо терминов “центр масс” и “центр инерции” употребляют также термин “центр тяжести”. Следовательно, координаты центра тяжести можно найти по формуле, справедливой для радиуса-вектора центра масс, о которой мы говорили в разделе “Центр масс системы материальных точек”. Положение центра тяжести можно вычислить также по формулам (7.40) и (7.41).
Центр тяжести можно определить и экспериментально.