
- •Министерство образования и науки российской федерации
- •Механика
- •Содержание
- •Предисловие
- •Программа курса “Механика”
- •Место дисциплины в учебном процессе и виды учебной работы
- •Распределение учебных часов
- •Учебно-тематический план
- •Содержание курса
- •Примерная тематика семинарских занятий
- •Вычислительный эксперимент
- •Средства обеспечения дисциплины
- •Рекомендуемая литература
- •Лекция №1. Введение
- •1. Предмет физики, её связь с другими естественными науками
- •2. Методы физических исследований
- •3. Роль модельных представлений в физике
- •4. Физические величины, их измерение и оценка точности и достоверности полученных результатов
- •5. Системы единиц физических величин
- •Контрольные вопросы
- •Лекция №2. Кинематика материальной точки при прямолинейном движении
- •1. Кинематические законы движения материальной точки
- •Зависимость (2.3)
- •2. Скорость и ускорение при прямолинейном движении
- •Контрольные вопросы
- •Лекция №3. Кинематика материальной точки при криволинейном движении
- •1. Скорость материальной точки при криволинейном движении
- •2. Ускорение материальной точки при криволинейном движении
- •3.Ускорение при движении материальной точки по окружности
- •4. Кинематика вращательного движения материальной точки
- •Контрольные вопросы
- •Лекция №4. Динамика материальной точки
- •1. Первый закон Ньютона
- •2. Масса
- •3. Сила
- •4. Второй закон Ньютона
- •5. Третий закон Ньютона
- •6. Импульс. Общая формулировка второго закона Ньютона
- •7. Виды взаимодействий тел
- •8. Гравитационные силы (силы тяготения)
- •9. Сила тяжести и вес. Невесомость
- •10. Силы трения
- •Контрольные вопросы
- •Лекция №5. Динамика системы материальных точек
- •1. Центр масс системы материальных точек
- •2. Закон сохранения импульса
- •Движение каждой точки описывается вторым законом Ньютона:
- •3. Движение тел с переменной массой. Реактивное движение
- •4. Задача двух тел. Приведенная масса
- •Контрольные вопросы
- •Лекция №6. Законы сохранения
- •1. Работа
- •2. Энергия и работа
- •3. Кинетическая энергия и работа
- •4. Потенциальная энергия
- •5. Закон сохранения и превращения механической энергии
- •6. Соударение двух тел
- •7. Момент силы относительно неподвижного центра
- •8. Момент импульса относительно неподвижного центра
- •9. Закон сохранения момента импульса
- •10. Законы сохранения и симметрия пространства и времени
- •Контрольные вопросы
- •Лекция №7. Механика твердого тела
- •1. Понятие об абсолютно твердом теле
- •2. Твердое тело как система материальных точек
- •3. Поступательное движение твердого тела
- •4. Вращательное движение твердого тела
- •5. Плоское движение твердого тела
- •6. Момент силы относительно оси
- •7. Момент пары сил
- •8. Второй закон Ньютона для вращающегося твердого тела
- •9. Момент инерции твердого тела
- •10. Теорема Штейнера
- •11. Закон сохранения момента импульса при вращательном движении
- •12. Кинетическая энергия вращающегося тела
- •13. Кинетическая энергия тела при плоском движении
- •14. Свободные оси вращения
- •15. Гироскоп
- •16. Степени свободы и связи абсолютно твердого тела
- •17. Условия равновесия твердого тела. Виды равновесия
- •18. Центр тяжести
- •Контрольные вопросы
- •Лекция №8. Механика деформируемых тел
- •1. Упругие силы
- •2. Виды упругих деформаций
- •3. Упругие и пластические деформации. Предел упругости и предел прочности
- •4. Всестороннее растяжение и сжатие
- •5. Энергия упругой деформации
- •Потенциальная энергия упруго деформированного стержня равна
- •6. Кручение
- •Контрольные вопросы
- •Лекция №9. Механика жидкостей и газов
- •1. Механические свойства жидкостей и газов
- •2. Гидростатика
- •Кажущийся вес тела
- •3.Гидродинамика
- •4. Описание движения жидкостей. Уравнение неразрывности струи
- •5. Уравнение Бернулли
- •6. Вязкость
- •7. Ламинарное и турбулентное течения
- •8. Течение вязкой жидкости в круглой трубе. Формула Пуазейля
- •9. Движение тел в жидкостях и газах. Закон Стокса
- •10. Истечение жидкости из отверстия
- •Контрольные вопросы
- •Лекция №10. Движение в неинерциальных системах отсчета
- •1. Неинерциальные системы отсчета
- •2. Силы инерции
- •3. Силы инерции при ускоренном поступательном движении системы отсчета
- •123 4. Силы инерции при равномерном вращательном движении системы отсчета. Центробежная сила инерции
- •5. Сила Кориолиса
- •Контрольные вопросы
- •Лекция №11. Механические колебания и волны
- •1. Гармонические колебания и их характеристики
- •2. Динамика колебательного движения
- •3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5. Сложение взаимно перпендикулярных колебаний
- •6. Свободные затухающие колебания
- •7. Вынужденные колебания
- •8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •9. Автоколебания
- •10. Распространение колебаний в однородной упругой среде
- •11. Уравнение плоской и сферической бегущей волны. Фазовая скорость. Волновое уравнение
- •12. Принцип суперпозиции. Групповая скорость
- •13. Энергия упругой волны
- •14. Интерференция волн
- •15. Стоячие волны
- •16. Характеристика звуковых волн
- •17. Эффект Доплера в акустике
- •18. Ультразвук и eго применение
- •Контрольные вопросы
- •Лекция №12. Всемирное тяготение
- •1. Законы Кеплера и закон всемирного тяготения
- •2. Гравитационная масса
- •3. Поле тяготения и его напряженность
- •4. Работа в поле тяготения. Потенциал поля тяготения
- •5. Космические скорости
- •6. Принцип эквивалентности гравитационных сил и сил инерции
- •Контрольные вопросы
- •Лекция № 13. Элементы специальной теории относительности
- •1. Преобразования Галилея. Механический принцип относительности
- •2. Постулаты специальной (частной) теории относительности
- •3. Преобразования Лоренца
- •4. Следствия из преобразований Лоренца
- •5. Интервал между событиями
- •6. Основной закон релятивистской динамики материальной точки
- •7. Взаимосвязь массы и энергии
- •Контрольные вопросы
- •Фатыхов Миннехан Абузарович Механика
9. Момент инерции твердого тела
Из формулы (7.24) видно, что угловое ускорение, сообщаемое телу вращающим моментом, зависит от момента инерции тела; чем больше момент инерции, тем меньше угловое ускорение. Следовательно, момент инерции характеризует инерционные свойства тела при вращательном движении, как и масса при поступательном движении. В отличие от массы тела момент инерции зависит от радиуса окружности, описываемой точкой приложения силы, а, следовательно, от выбора оси вращения.
Из формулы следует, что единицей измерения момента инерции является кг.мІ.
Из определения момента инерции
(7.25)
видно, что момент инерции есть величина аддитивная. Это означает, что момент инерции тела равен сумме моментов инерции его частей:
(7.26)
Момент инерции существует безотносительно к вращению. Каждое тело независимо от того, вращается оно или покоится, обладает определенным моментом инерции относительно любой оси.
Для неоднородных тел и тел неправильной формы момент инерции определяют экспериментально, а для однородных тел геометрически правильной формы – посредством интегрирования.
Как
было ранее указано, в силу формулы (7.3)
элементарная масса
равна произведению плотности тела
в данной точке на соответствующий
элементарный объем:
.
Следовательно,
момент инерции можно представить в
виде:
.
Если плотность тела постоянна, её можно вынести за знак суммы задача нахождения моментов инерции сводится к интегрированию:
(7.27)
Интегралы в (7.27) берутся по всему объему тела. Величины и r в этих интегралах являются функциями точки.
В качестве примера вычислим момент инерции однородного диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр (рис. 7.10).
Рис. 7.10.
Разобьем
диск на кольцевые слои толщиной
.
Все точки одного слоя будут находиться
на одинаковом расстоянии от оси, равном
.
Объем такого слоя равен
,
где
– толщина диска. Поскольку диск однороден,
плотность его во всех точках одинакова,
(7.27) можем вынести за знак интеграла:
,
где
–
радиус диска.
Так
как масса диска
,
то получим
(7.28)
Для однородных и симметричных тел обычно основной осью вращения является ось симметрии. В этом случае момент инерции, как мы видели, легко вычисляется.
Для некоторых тел правильной формы значение моментов инерции относительно осей, проходящих через центр их симметрии приведены в таблице 2.
Таблица 2
Форма тела |
Расположение оси |
Величина момента инерции |
Обруч |
|
|
Цилиндр |
|
|
Шар |
|
|
Примечание: m – масса тела, R0 – его радиус |
10. Теорема Штейнера
Рассмотрим
произвольное тело и две параллельные
друг другу оси, одна из которых (ось С)
проходит через центр масс тела, а другая
(ось О) отстоит от первой на расстояние
а
(рис. 7.11). Выберем оси координат
и
так, как показано на рис. 7.11.
Рис. 7.11
Момент инерции относительно оси О определяется выражением
Разобьем
это выражение на три суммы:
Первая
сумма представляет собой момент инерции
относительно оси, проходящей через
центр масс. Сумма
дает массу тела
.
Наконец,
,
где
– координата центра масс, которая при
сделанном выборе начала координат равна
нулю. Таким образом, мы приходим к
соотношению:
(7.29)
Это
соотношение выражает теорему Штейнера,
которая гласит, что момент
инерции
относительно
произвольной оси равен сумме момента
инерции
относительно оси, параллельной данной
и проходящей через центр масс тела, и
произведением массы т тела на квадрат
расстояния а между осями.
В
соответствии с теоремой Штейнера момент
инерции диска относительно оси ОґОґ,
отстоящей на расстоянии
от
оси, проходящей через центр масс,
равен
найденному нами моменту инерции
(7.28) относительно
оси, проходящей через центр диска, плюс
:
.